The First To Fly

PrintPrintEmailEmail

It seemed, as the year 1903 drew to a close, that man was not quite ready to fly. Many had tried, but so far all had failed to get off the ground in a powered machine that could do more than just return to earth right away. Twice that very year, on October 7 and again on December 8, Charles M. Manly had taken off in self-propelled, gasoline-powered flying machines designed and built by the distinguished head of the Smithsonian Institution, Dr. Samuel Pierpont Langley. Twice Manly had crashed into the Potomac River; twice he had narrowly escaped drowning before managing to free himself from the wreckage. After the second failure thé New York Times urged Langley to give the whole idea up as a waste of time. “Life is short,” the newspaper said, “and his is capable of services to humanity incomparably greater than can be expected to result from trying to fly.”

Not all the early test pilots had been as fortunate as the intrepid Manly. The great German glider pilot Otto Lilienthal was dead, his back broken in a glider crash in 1896. And in England, Percy Pilcher, a promising young disciple of Lilienthal’s, had also been killed in a glider accident. The others had simply given up when the solution ultimately eluded them.

Then, on December 17, 1903, only nine days after Langley’s last failure, came this startling telegram from an obscure sand spit off the North Carolina coast named Kitty Hawk:

SUCCESS FOUR FLIGHTS THURSDAY MORNING ALL AGAINST TWENTY ONE MILE WIND STARTED FROM LEVEL WITH ENGINE POWER ALONE AVERAGE SPEED THROUGH AIR THIRTY ONE MILES LONGEST 57 SECONDS INFORM PRESS HOME CHRISTMAS. OREVELLE WRIGHT The message was addressed to Bishop Milton Wright of Dayton, Ohio, and it was from his sons Orville—whose name got garbled in transmission—and Wilbur.

The homemade gasoline engine aboard the Wrights’ airplane didn’t run very well. The aircraft was also hard to control and had a habit of diving abruptly into the sand. It couldn’t make a turn yet, much less a precision landing; it was uncomfortable, dangerous, and easily damaged.

But the two shy, strait-laced Wright brothers were the first people in the world to achieve powered flight. On December 17 they made four flights—of 120, 175, 180, and 852 feet—and they took photographs to prove it, including perhaps the most dramatic aviation picture of all time (see page 65), showing the first flight just an instant after it became airborne with Orville at the controls.

The first Wright powered machine may have left a lot to be desired as far as performance went, but it was a thing of unique beauty and grace. And in its lines it foreshadowed all that was to follow until man began to send wingless, unstreamlined machines into space. Looking back over sixty years, it may seem that the family resemblance between the Wright machine and today’s sleek, modern aircraft is somewhat vague and indistinct. But the resemblance is real enough, for the underlying principles of flight discovered by the Wrights and applied to the design of their aircraft are the same immutable principles that apply today.

With their first flights on December 17, 1903, the Wright brothers demonstrated that they had mastered the three essential elements of flight. First, they had designed wings with sufficient lifting power to sustain their machine in the air. Next, they had built themselves a power plant consisting of engine and propeller that was capable of moving the craft through the air fast enough so that air rushing over the wings generated enough lift to keep the machine airborne. Finally, they had developed a system of controlling the movement of their machine so that once it was off the ground they could keep it off the ground until they were ready to land or—as in the case of the first few flights—until their engine quit.

Others before them, such as Langley, had developed wings with lifting power and power plants capable of driving a machine through the air. In these two areas the Wrights improved substantially on existing technology. But in the field of aircraft control the Wrights, at the very beginning of their interest in flying, came up with a method of controlling the motion of their aircraft that permitted them to succeed where all others had failed. Arguing, debating, discussing things between themselves as the nineteenth century drew to a close, the two brothers made one of those rare intuitive mental leaps that, just when a situation seems stagnant, suddenly sends the human race surging ahead into undreamed-of realms. The Wrights’ breakthrough was profound—their control system is used on every fixed-wing aircraft that flies today. And, like most great scientific advances, it was simple. It had to be, for neither brother had gone to college. In fact, neither had finished high school.

Prior to the Wrights the most successful flying machines had been the gliders of Lilienthal in Germany and Octave Chanute in the United States. Between 1891 and 1896 Lilienthal made some two thousand flights in batlike gliders which he launched from a manmade hill near Berlin and controlled by shifting his weight. In some of these he covered distances of nearly one thousand feet. The Chanute glider looked more like a conventional biplane. As in the Lilienthal machine, the pilot dangled below the wings and attempted to control his craft by swinging the lower part of his body. With test pilot A. M. Herring aboard, Chanute tested his designs on the sand hills bordering Lake Michigan near Miller, Indiana, in 1896.