The First To Fly

PrintPrintEmailEmail

In neither case did control by weight shifting work very well. Lilienthal was fatally injured on a routine flight on August 9, 1896, when a gust of wind threw his glider out of control. Despite the fact that Herring once made a flight of 359 feet in the Chanute machine, experiments with it in the fall of 1896 were generally inconclusive and were soon discontinued.

The problem lay in the fact that a shift of weight—even a large one—was not sufficient to counteract gusts of wind once the Lilienthal and Chanute gliders tipped over beyond a certain point. The balance of these gliders was something like that of a bicycle. As long as they were upright, level, and moving ahead, they were steady. But once they started leaning to one side or the other, they tended to keep right on going over like a leaning bicycle until they passed the point where the shifting of weight would do any good.

The first thing the Wrights did was solve the problem of control. Many years later Orville Wright recalled the chain of events that led to their remarkable piece of deductive reasoning:

“Our first interest began when we were children. Father brought home to us a small toy actuated by a rubber spring which would lift itself into the air. We built a number of copies of this toy, which flew successfully. … But when we undertook to build the toy on a much larger scale it failed to work so well. The reason for this was not understood by us at the time, so we finally abandoned the experiments. In 1896 we read in the daily papers, or in some of the magazines, of the experiments of Otto Lilienthal. … His death a few months later … increased our interest in the subject and we began looking for books pertaining to flight. We found a work written by Professor [Étienne] Marey on animal mechanism which treated of the bird mechanism as applied to flight, but other than this, so far as I can remember, we found little.

“In the spring of the year 1899 our interest in the subject was again aroused through the reading of a book on ornithology. We could not understand that there was anything about a bird that would enable it to fly that could not be built on a larger scale and used by man. … We knew that the Smithsonian Institution had been interested in some work on the problem of flight, and accordingly, on the 30th of May 1899, my brother Wilbur wrote a letter to the Smithsonian inquiring about publications on the subject.”

Dr. Langley had done considerable work of his own by this time, had already flown a steam-powered model, and was well up on the work of other people. Thus the Smithsonian sent the Wrights several monographs by Langley as well as papers by Lilienthal, Chanute, and other scientific writers of this period who had explored the problem of flight. The Wrights studied this material and were immediately struck by a fact that everyone else had missed.

They reasoned that if a gust of wind struck a glider and tilted it over to the point of instability, the thing to do was to increase the lift of the low wing so that it would rise, while simultaneously decreasing the lift of the high wing so that it would drop back to a stable level position. This was the breakthrough that was needed. The next step was to figure out a practical way to apply this solution to the control problem. Orville tells how Wilbur worked it out:

“Wilbur … demonstrated the method by means of a small pasteboard box, which had two of the opposite ends removed. By holding the top forward corner and rear lower corner of one end of the box between his thumb and forefinger and the rear upper corner and the lower forward corner of the other end of the box in like manner, and by pressing the corners together the upper and lower surface of the box were given a helicoidal twist, presenting the top and bottom surfaces of the box at different angles on the right and left sides. From this it was apparent that the wings of a machine of the Chanute double-deck type, with the fore-and-aft trussing removed, could be warped in like manner so that in flying the wings on the right and left sides could be warped so as to present their surfaces to the air at different angles of incidence and thus secure unequal lifts on the two sides.”

That was in late July, 1899. Wilbur was then thirty-two years old and Orville almost twenty-eight. Up until this time they had led serene but somewhat threadbare lives as part of a midwestern minister’s large, close-knit family. Bishop Wright was one of the leaders of the United Brethren Church. For almost fifty years since his ordination in 1850 he had taught in church schools or preached in a string of small communities in southeastern Indiana. The three older Wright sons—Reuchlin, Lorin, and Wilbur—were all born in Indiana. Orville and his sister Katherine were born in Dayton, where the family had moved in 1869. The Wrights moved back to Indiana once more after that and then settled permanently in Dayton in 1884.