Frederick Winslow Taylor


Toward the end of the last century an idea took form in the mind of a Philadelphia factory engineer that was destined to change, in profound and troubling ways, the nature of work in the modern world. The engineer was Frederick Winslow Taylor, a brash and eccentric young man whose most notable prior accomplishment had been the invention of a crook-handled tennis racquet, shaped like a giant teaspoon, with which he had taken the measure of a number of the leading players of the day. The idea that came to Taylor was that just as there was a science of metals (metallurgy) and a science of machines (mechanics), there must be a science and technology of work, whose laws could be discovered by observation and experiment. He was soon convinced—and he was to spend the rest of his life trying to convince others—that only by requiring workers to submit to the authority of those laws, and thereby to surrender all claims to autonomy or discretion in their work, could the full potential of the industrial revolution at last be realized.

The key element in Taylor’s new technology of work, to which he later gave the name of “scientific management,” was the time-and-motion study. This was, and is, a technique for determining how fast a job can reasonably be performed, and for identifying, and eliminating, inefficient and time-wasting practices. Its symbol and principal tool is the stop watch, and its end product is an instruction sheet specifying the exact sequence of operations to be followed in doing a given job, and the exact time, to the second, in which each operation is to be completed. Workers, Taylor wrote, “must do what they are told promptly and without asking questions or making suggestions. … It is absolutely necessary for every man in an organization to become one of a train of gear wheels.”

In factories where Taylor’s ideas were put into effect, output doubled or even tripled, and profits soared. Wages went up too, for it was a fixed principle with Taylor that workmen meeting the new production standards were entitled to bonuses of 30 to 60 per cent or more. Such striking demonstrations of what scientific management could do eventually caught the public fancy, and in the last years of Taylor’s life—he died in 1915—magazines and newspapers competed in praising him. The popular journalist Will Irwin, writing in The Century , observed, for example, that efficiency was “a kind of religion” for Taylor and his disciples. Their object, he added, “is not only the increase of production, but the ultimate happiness of the world—satisfied stomachs, shod feet, light hearts, untroubled souls.” Taylor’s admirers included a number of the leading reformers of the day, among them Louis D. Brandeis and Herbert Croly, the founder of the New Republic , who saw scientific management as a magical device for enriching labor without impoverishing capital.

Capital and labor, however, were slower than the general public and the reformers to embrace Taylor’s ideas. For many years, factory managers, with a few notable exceptions, refused to make the sweeping changes in the way they ran their plants that Taylor insisted were j ust as important as time-and-motion studies if the full benefits of scientific management were to be reaped. Union leaders, for their part, denounced Taylorism as a new form of the speed-up, and as a scheme for turning men into machines.


But the principles of factory management laid down by Taylor—principles whose most spectacular application was the modern assembly line, with its meticulously planned flow of parts and materials, and its complete subordination of man to machine—were too potent to be resisted very long. Within a few years of Taylor’s death, the unions largely had ceased to oppose his ideas—who could oppose efficiency?—demanding only that they be given say in determining what was to constitute a fair day’s work. A new generation of managers, many of whom had been trained, like Taylor, as engineers, impatiently rooted out the wasteful practices and the permissive attitudes toward work that Taylor had deplored, and took pride in transforming their factories into huge, intricately articulated production machines. Scientific management soon took root in other countries besides the United States, notably in France, where, in 1918, Premier Georges Clemenceau ordered all factories under control of the Ministry of War to begin at once to put Taylor’s ideas into operation. In the same year Lenin took note of “the refined brutality of bourgeois exploitation” that he said was a mark of scientific management, but went on to say that Russians must nevertheless “systematically try it out and adapt it to our own ends.” By the 1930’s Taylor’s ideas were regarded by practical men everywhere as revealed truth.

Recently, to be sure, those ideas have come under increasing attack. The attackers include, for example, the Marxist writer Harry Braverman, whose influential Labor and Monopoly Capital, subtitled The Degradation of Work in the Twentieth Century , is taken up largely with a bitter critique of the Taylorian gospel. Scientific management is also out of favor with many business school professors. Some corporate executives have even become disenchanted to the point of supporting heretical experiments in the organization of work on non-Taylorian lines. In the United States and Europe, notably in Norway and Sweden, workers have been grouped into teams whose members are freed from the tyranny of time-and-motion studies and are permitted to arrange among themselves how best, for example, to put together an automatic transmission.