“The Air Age Was Now”


It was a long moment for the witnesses. They had seen the gliders, but now the powered machine, propellers whirling and engine rumbling like hard, irregular thunder, fascinated them. They could see only the gross details, of course, but had they known what to look for, they would have determined the first powered aircraft to have a wing span of 40 feet and 4 inches, a camber of 1 in 20, a wing area of 510 square feet, and a length of 21 feet and 1 inch. Without the pilot, it weighed 605 pounds. The practiced eye would have seen that from side to side this was not a symmetrical craft: the engine was placed to the right of center on the bottom wing to reduce the danger of the engine falling upon the hapless pilot in a crash. And the pilot, as he had done with the gliders, lay prone, but now to the left of center in order to sustain proper balance. Also, the right wing was some four inches longer than the left wing, to compensate for the engine, which weighed between 30 and 40 pounds more than the pilot—depending upon whether Wilbur or Orville was aboard.

A hand lever operated the elevator, which extended well ahead of the wings, moving it up or down as the pilot intended. The new machine had twin movable rudders rather than the single vertical rudder of the 1902 glider, and the rudders were linked by wires to the wing-warping system. To coordinate controls, the pilot worked the rudders and wing warp by wires attached to his hip cradle. If he wanted to turn to the left, the pilot moved his body in that direction, and the cradle moved to the left. This warped the right rear wing tips to the down position, and the left rear wing tips to the up position, and at the same time, automatically, the rudders moved to compensate for yawing effects in the turn. By now the Wrights understood their system well enough to know the heavier machine needed two rudders. These counteracted fully the added resistance of the wing with the greater angle and the resulting tendency of the craft to swing in a direction opposite to a desired turn; the rudders also assisted the turn by their effect on the airstream.

The engine rumbled, the propellers whirled, and Wilbur shouted he was ready to fly. He reached down before him and grasped the restraining wire to release its grip.

Nothing happened. The wire was pulled so tight his hands could not overcome its restraining force. Orville’s shouts brought the men to pull back on the Flyer to slacken the wire and Wilbur at once jerked it free—“… before I myself was ready,” Orville related, “Will started machine. I grabbed the upright the best I could and off we went. By the time we had reached the last quarter of the third rail (about 35 to 40 feet) the speed was so great I could stay with it no longer. I snapped watch as machine passed end of track. (It had raised from track six or eight feet from end.) The machine turned up in front and rose to a height of about 15 feet from the ground at a point somewhere in neighborhood of 60 feet from end of track. After thus losing most of its headway it gradually sank to ground turned up at angle of probably 20° incidence. The left wing was lower than the right so that in landing it struck first. The machine swung around and scraped the front skids (bows running out to front rudder) so deep in sand that one was broken, and twisted around until the main strut and brace were also broken, besides the rear spar to lower surface of front rudder.

“Will forgot to shut off engine for some time, so the record of screw turns was mostly taken while the machine was on the ground. The engine made 602 rev. in 35½ s. Time of flight from end of track was 3 ½ sec. for a distance of 105 ft. Angle of descent for the 105 feet was 4° 55 ′. Speed of wind was between 4 and 8 miles.”

That evening, in a letter to their family, Wilbur provided this account: “We gave machine first trial today with only partial success. The wind was only about 5 miles an hour so we anticipated difficulty in getting speed enough on our short (60 ft.) track to lift. We took to the hill and after tossing for first whack, which I won, got ready for the start. The wind was a little to one side and the track was not exactly downhill which caused the start to be more difficult than it would otherwise have been. However the real trouble was an error in judgment, in turning up too suddenly after leaving the track, and as the machine had barely speed enough for support already, this slowed it down so much that before I could correct the error, the machine began to come down, though turned up at a big angle. Toward the end it began to speed up again but it was too late, and it struck the ground while moving a little to one side, due to wind and a rather bad start. A few sticks in the front rudder were broken, which will take a day or two to repair probably. It was a nice easy landing for the operator. The machinery all worked in entirely satisfactory manner, and seems reliable. The power is ample, and but for a trifling error due to lack of experience with this machine and this method of starting the machine would undoubtedly have flown beautifully.…”

Details notwithstanding, neither of the brothers thought IWilbur had achieved a successful flight—only its promise. The machine had left the ground higher than its landing and in an unsustained flight, and obviously had touched down out of control. Thus it failed to meet the hard definitions of sustained and controlled flight.