“God Pity A One-Dream Man”

PrintPrintEmailEmail

In 1901, just after Christmas, in Worcester, Massachusetts, a sickly nineteen-year-old high school student named Robert Hutchings Goddard sat down to compose an essay on an enterprise of surpassing technological challenge. He was no stranger to enterprise. He had already tried to fly an aluminum-foil balloon filled with hydrogen gas and attempted to build a perpetual-motion machine. Samuel P. Langley, aeronautical pioneer and Smithsonian Institution secretary, had asserted in print that birds turn in flight by beating one wing faster than the other; skeptical, Goddard had observed closely the banking flight of chimney swifts and written to a popular magazine to correct the distinguished physicist’s error. The enterprise that challenged Goddard now, that had fired his dreaming for more than two years, was space travel. He titled his essay “The Navigation of Space.” Concisely, unemotionally, it defined his life’s work.

“The interesting problem of space travel seems to be much neglected,” Goddard began, “which is not surprising considering the almost insurmountable difficulties involved. Occasionally, however, we may hear of a plan suggested. The method generally advanced is causing the recoil of a gun placed in a vertical position with the muzzle directed downwards, to raise itself together with a car containing the operator.” A rocket, in other words, and a spacecraft and a man.

Goddard’s perspicacity here is remarkable. The Wright brothers would not achieve bare powered flight until 1903. Rockets were known in 1901—small, erratic, powder rockets for siege warfare and signaling—but their technology had been in decline for half a century. Nor was rocket propulsion as a means of space travel “generally advanced.” Despite the authority of Newton’s third law of motion, “to every action there is always opposed an equal reaction,” responsible scientists as well as laymen still believed that rockets required air behind them to push against and could not in any case fly faster than the velocity of their exhausts. Goddard knew that existing rockets were inadequate, and he wasn’t at all sure that anything this side of atomic energy would be energetic enough to power a rocket to escape the earth, but he had already perceived that the application of the rocket to space travel was a technological problem, not one of basic science, and could in time be solved. “At present,” he concluded, “the mass of the [propellant] cartridge is too great in proportion to that of the gun to allow for a voyage in space and the return. … Space navigation is an impossibility at the present time; yet it is difficult to predict the achievements of science in this direction in the distant future.”

The work of Robert Goddard’s life was rockets. He published the first detailed, physically and mathematically correct theory of astronautics. He invented, built, and launched the first liquid-fuel rocket to fly under its own power. Between 1917 and 1941, supported by modest grants from the Smithsonian Institution, Clark University, and other sources, along with massive grants from the Daniel and Florence Guggenheim Foundation—$209,940 in twenty-four years, more money than any other American scientist was granted for research on a single project until World War II—he invented, patented, and tested most of the components vital to modern rocketry. More than 200 of his 241 patents are acknowledged as prior art in the design of space rockets today. The Space Shuttle designed to orbit the earth is a direct descendant of his research.

Yet the rockets Goddard designed never achieved a flight altitude of more than 9,000 feet; though he was by far the most knowledgeable rocket expert in the United States, he was shunted aside when the U.S. military began serious experimentation in the late 1930’s with jet- and rocket-propulsion, and participated in those developments only peripherally; and he died, in 1945, short months after examining a captured German V-2 that might have come from his own workshop—so similar was it to his own designs—a neglected and a disappointed man. Pioneers often suffer for their boldness. Despite the all-inclusiveness of his invention and the distinction of his support, Goddard suffered for his granitic New England reserve. But that is only part of the story.

He was born in Worcester on October 5, 1882. His father was a businessman with a knack for invention—Nahum Goddard had patented a machine knife for cutting rabbit fur and developed a new type of welding flux—and his mother was a genteel tubercular invalid. When he was “four or five” years old he attempted to fly electrically by carrying a zinc battery rod while he scuffed his feet along a gravel walk and then jumped off a fence. The equipment amused his mother, but the jumping alarmed her; she “called out to me that I should be careful, because sometime it might work, and I would go sailing away, without being able to come back. After this warning, I hid the zinc rod and never repeated the experiment.”