“i Am Become Death…”

PrintPrintEmailEmail
 

Something happened on Corsica to change his mind, something he would later reveal only in hints: he met a woman, probably a married woman, and learned the certification of love. He returned to Corsica for the summer. “A great thing in my life,” he told biographer Nuel Pharr Davis, “a great and lasting part of it.…You can’t dig it out. What you need to know is that it was not a mere love affair, not a love affair at all, but love.” Love affair or love, it persisted only in correspondence or memory. During the Corsica summer, Oppenheimer read Proust’s Remembrance of Things Past in its entirety, and mingling the two Corsica experiences in recollection a decade later, he told his Berkeley friend Haakon Chevalier that reading Proust had been “one of the great experiences in his life.” To Chevalier he quoted from Proust a telling passage: “Perhaps she would not have considered evil to be so rare…had she been able to discern in herself, as in everyone, that indifference to the sufferings one causes, an indifference which, whatever other names one may give it, is the terrible and permanent form of cruelty.”

The woman may have been unknowingly indifferent to his sufferings, but something in the relationship set Oppenheimer’s “dementia praecox” healing. Entrained for doctoral study at the University of Göttingen in the autumn of 1926, with two of his papers accepted for publication in the Proceedings of the Cambridge Philosophical Society , he had at last begun to come alive as a physicist and a man.

Göttingen, the German university where the most advanced physics of the day, quantum mechanics, took form—a cathedral of sorts, the work of many hands—was triumph again, not apprenticeship this time but solid achievement. Oppenheimer’s special contribution, appropriate to the sweep of his mind, was to extend quantum theory beyond its narrow initial ground.

Oppenheimer’s Ph.D. thesis, “On the Quantum Theory of Continuous Spectra,” composed in German, appeared in the Zeitschrift für Physik in 1927. Max Born, his teacher, marked it “with distinction”; and, added to the sixteen papers he published between 1926 and 1929, it established for him an international reputation. He came home to lecture at Harvard and Caltech—shouting “Quantize it! Quantize it!” to startled students-then returned to Europe to study with Paul Ehrenfest and Wolfgang Pauli at Leiden and Zurich. At Göttingen he had mastered Italian well enough in one month’s study to read Dante; at Leiden he lectured in Dutch six weeks after he arrived. Pauli found his thinking slack—“Tauli once remarked to me,” writes physicist I.I. Rabi, a Nobel laureate and Oppenheimer’s staunch defender at the 1954 security hearings, “that Oppenheimer seemed to treat physics as an avocation and psychoanalysis as a vocation”—and fiercely tightened him up. The price of the mental thumbscrewing was tuberculosis, which Oppenheimer dried out that summer, 1929, at Perro Caliente, his New Mexican ranch. Returning to Berkeley in the fall, he was prepared to found there and at Caltech a school of theoretical physics, whose international reputation would eventually rival Göttingen’s.

After 1929 and through the decade of the 1930’s, a decade marked by his mother’s and father’s deaths—another lading of grief, another accounting of manhood—Oppenheimer dug harder for originality. He formulated the Dirac theory, an extension of quantum mechanics to include the theory of relativity, as a field theory, and was the first to predict the antiproton (his paper on this, like most of his later papers, was coauthored). He formulated the Tunnel Effect, the principle upon which the tunnel diode of electronics is based. He enlarged theoretical understanding of cosmic rays. Modeling the imploding collapse of dying suns, he predicted the neutron star—the pulsar, discovered in the 1960’s, is one such structure—and the black hole. He was primarily interested in particle physics—“I never found nuclear physics so beautiful,” he said—but working with Ernest O. Lawrence and his cyclotrons at Berkeley, he became an expert on nuclear matters as well. By 1945 he had published a total of sixty-six papers; after the war, particle physics would dominate American physical studies, a lasting tribute to his influence on the American school.

Without question, Oppenheimer’s intelligence exceeded that of any of his peers—“I was never in the same class with him,” I.I. Rabi remarked—but despite the breadth of his contribution, he reined back from work historically unique. Writing for the 1967 Oppenheimer Memorial Session of the American Physical Society, Rabi attempted to explain the hesitation:

“Oppenheimer understood the whole structure of physics with extraordinary clarity, and not only the structure, but the interactions between the different elements. Hardly any branch of physics was foreign to him. As well as theoretical physics, he also had a vast knowledge of experimental results and methods at his fingertips and would continually amaze experimenters by his great knowledge of their own subject—in some respects exceeding their own, especially in fields of great current interest.…