The Ancient History Of The Internet

PrintPrintEmailEmail

It was an idea that appealed to ARPA, particularly its Command and Control Research Office, headed by a computer scientist named J. C. R. Licklider. ARPA in the 1960s became the patron of computer research, a Medici to the mathematical Michelangelos. The agency funded research into countless aspects of hardware and software development, including graphies, simulations, head-mounted displays, parallel processing, and networking. ARPA grants produced the most powerful computer of the mid-1960s, the University of Illinois’s ILLIAC IV, as well as nearly all artificial intelligence research in the 1960s. “Far from [our] being evil warmongers,” the computer scientist Eugene Miya has somewhat defensively said, “Some neat work was done.”

Miya and other hackers (the word then carried no negative connotations) were in deep denial, trying to insulate themselves from the currents of dissent about the Vietnam War sweeping across many campuses. Although their work was funded almost entirely by the “villainous” Pentagon (one of the most prominent figures of the 1990s digital revolution told us that 95 percent of his budget came from the military during his lab’s critical early years), the computer scientists continued to insist that ARPA funding didn’t make them part of the military-industrial complex. “I like to believe,” the computer scientist Alan Perlis later said, “that the purpose of the military is to support ARPA, and the purpose of ARPA is to support research.”

As part of its research support, ARPA agreed to fund an experimental computer network. The network, ARPA officials hoped, would demonstrate the feasibility of remote computing from the battlefield as well as test the potential of a post-World War III military communications network. In addition, the network would enable widely dispersed researchers to share the few supercomputers of the era, so that the Defense Department wouldn’t have to buy one for every contractor. In 1968 ARPA solicited bids for an expandable network linking four sites already conducting ARPA research: the University of California campuses at Los Angeles and Santa Barbara, the Stanford Research Institute (SRI), and the University of Utah.

While the bids were continuing to come in, a handful of representatives of these proposed ARPAnet nodes met to discuss what lay ahead. “We had lots of questions,” recalled Stephen D. Crocker, at the time a UCLA graduate student. People wondered how the computers would be linked and what they would be capable of doing. “No one had any answers, but the prospects seemed exciting,” he remembered. The men decided to hold more meetings. The Network Working Group, as they dubbed themselves, proved as fluid and non-hierarchical as the Internet itself would ultimately be; an early memo prefaced a list of group members by saying that “the Network Working Group seems to consist of. … ” “We had no official charter,” said Crocker. “Most of us were graduate students, and we expected that a professional crew would show up eventually to take over. …” Of course there were no seasoned veterans; the students and professors had to be their own crew.

 
People worried that sending personal messages might somehow violate law. Soon, however, a student hacker mentality took over.

The ARPAnet construction contract was awarded to Bolt Beranek & Newman, a Cambridge-based research firm with close ties to MIT. BBN shipped the new communications software in August 1969 to UCLA and then to SRI in October. At a November demonstration the two California machines exchanged data. The first long-distance packet-switched network was in operation. By the end of the year, all four nodes were on-line.

At this point the striking figure of Vinton Cerf, the computer scientist The New York Times called the father of the Internet, begins to take a leading role in the narrative. Born in 1943 in New Haven, Cerf turned his back on Yale to do his undergraduate work in mathematics at Stanford and to get his master’s and doctorate in computer science from UCLA. In 1969 Cerf was a graduate student working at UCLA’s Network Measurement Center, observing how the new fournode ARPAnet was functioning—and what it would take to make it malfunction. “There were many times when we would crash the network trying to stress it,” Cerf recalled.

Soon he was collaborating with Robert Kahn, an MIT math professor on leave to work at BBN. Cerf and Kahn developed a set of software “protocols” to enable different types of computers to exchange packets, despite varying packet sizes and computer clock speeds. The result, TCP/IP, was released in 1973 (by which time Cerf was teaching at Stanford). TCP —Transmission Control Protocol—converts messages into packet streams and reassembles them. IP—Internet Protocol—transports the packets across different nodes, even different types of networks. Just as TCP/IP stands for a whole “suite of protocols,” not just those two, so were there several fathers of the Internet; Cerf credits many people, “thousands by now,” for helping create the computer-network communications system we’ve come to know.