The Case Of The Vanishing Records

PrintPrintEmailEmail

“The critical years are from about 1890 to the Second World War,” Thomas Barrow says. “After that, most still-camera film [was made with] a non-inflammable (safety) acetate base, which is much more permanent than nitrate. By means of transferring them to acetate or the newer polymer-based film and keeping them at the optimum temperature and humidity, we can take care of the photographs that we have at Eastman House.” But Barrow points out that because of storage space and budget, Eastman House cannot even accept all the negatives that are offered to it for preservation. “The real danger” he says, “is the probable loss of those possibly splendid local photographers—the Alice Austens of this century—whose nitrate film is now stored in attics, basements, or the libraries of local historical societies. Most likely by the time someone knowledgeable gets around to looking at them, there will be nothing left.”

As the full seriousness of the situation became apparent, a variety of rescue plans for the printed word were suggested. William Barrow himself experimented with a number of techniques whereby books could be de-acidified by being soaked in or sprayed with solutions of calcium and magnesium bicarbonate. But these techniques are slow, expensive, and of uncertain effectiveness.

More widely publicized is the use of microfilm (on acetate) for preserving the contents of books and newspapers. It has been suggested that this is the answer. But in the early 1960’s, some signs of deterioration were found on microfilm negatives that were only twenty-five to thirty years old, and a special committee formed by the Association of Research Libraries stated: “Although apparently not widespread this deterioration is potentially serious enough to justify not placing reliance on negative microfilm as a means for long-term preservation of even the text of significant books.”

The makers of microfilm replied that the spots that had appeared had not impaired the film. They also stated that microfilm should be stored in tin cans—the acid in some paper cartons can migrate to film—at less than thirty per cent humidity, and that the temperature should not be allowed to go over seventy degrees. The microfilm should be kept free of dust and away from polluted air, should be handled by experts, and should be used only in clean viewing machines. These are requirements easily met by, say, a company that uses microfilm to preserve rarely consulted records, but an understaffed public library in the middle of a dirty city with thousands of people using its collection every day simply cannot enforce such standards. Moreover, librarians are unanimous in the opinion that the task of transferring enormous volumes of material to microfilm presents problems that are presently insurmountable.

The major over-all proposal for preserving the written word of our heritage is that put forth by a committee of the Association of Research Libraries. This would establish a central library that would assure the preservation for as long as possible of at least one copy of every significant document, by de-acidification as well as by cold storage—which, it has been found, sharply retards disintegration—and provide for use of these through microfilm or other photocopies. Research libraries and archives would be expected to give their deteriorating materials to the central library before they became completely unusable. Though this proposal has met with widespread approval, nothing has yet been done to implement it.

There is one hopeful development which, though it cannot do much about the past, may make life easier for scholars and librarians of future decades. In the course of his work William Barrow showed that if an alum-free sizing were used, if the wood in the pulp were thoroughly washed, and if the paper had long wood fibers, it was possible to make long-lasting chemical wood paper. As a result, many manufacturers, including Standard, S. D. Warren, Baton’s, Meade, and Oxford, are now producing acid-free papers. Standard, for instance, has made a paper that it says will last three hundred years compared to the thirty-to-fifty-year life of most book papers of ten years ago, and the company now claims a breakthrough to a paper that has a life expectancy of one thousand years. The new papers are being used by a number of presses, especially those connected with universities—Oklahoma, Yale, Harvard, Chicago, Ohio, and Indiana, for example—as well as by a number of scientific publications, including the Biophysical Journal and the Journal of Mathematics and Mechanics . More recently, commercial publishers such as McGraw-Hill and Barnes and Noble have begun to switch to acid-free paper. It seems safe to predict that since the new papers cost only slightly more than the acid ones, more and more paper manufacturers will make them and more publishers will use them.