A Demonstration At Shippingport

PrintPrintEmailEmail

Finally, and briefly, the private power industry understood that if it didn’t get its marching orders soon, government outfits like TVA would occupy the field. It pushed Congress that much harder.

Out of the Joint Committee hearings of summer 1953; out of the Eisenhower administration’s conviction that private enterprise could do the job, whatever the job might be, better than public authority; out of Eisenhower’s vision of nuclear swords melted into a pool of plowshares; out of yet more hearings, closed and open, in 1954, Congress forged a new Atomic Energy Act. The Atomic Energy Act of 1954 allowed private industry to own and operate reactors (but not yet own fissile materials—that liberalization came later). It loosened the stranglehold of AEC security. To collect liberal support, it prohibited the AEC from subsidizing any private projects for purposes more commercial than research and development. Through various legal and technical arrangements, it encouraged private marketing activities abroad. A General Electric executive summarized the new act simply: by its provisions, he wrote, “The Government monopoly created by the 1946 Act was substantially broken.”

Waving a magic wand—a neutron source—over a transmitter in Denver, Colorado, where he was recovering from a heart attack, President Eisenhower activated an automatic bulldozer in Shippingport to turn the first dirt for the new power plant on Labor Day, September 6,1954. Excavation and building began in earnest the following spring. Work progressed smoothly. “We are able to do our work with few letters and no fuss,” Rickover told the Joint Committee. “There has never been a single letter written between the Commission and the Duquesne Light Company since the contract was signed with them. It has never been necessary. …” Rickover would arrive at the site from Washington in the evening or late on a Friday afternoon, to keep his managers worrying nights and weekends. “There was a motto down here,” Duquesne president Stanley Schaffer remembers, “that some of us who were the doers learned to hate—the Admiral’s motto, ‘Full Power in Fifty-Seven.’ ” Not everyone loved the admiral, but he got the job done.

It was no small task. The pressure vessel that would hold the reactor’s hot, radioactive core, thirty-three feet long and nine feet in diameter, half a foot thick, required two and a half years to fabricate. Westinghouse, Duquesne, the Navy, the AEC, and all their several contractors had to coordinate their efforts on and off the site. Uranium oxide would be used as a fuel in the PWR for the first time and had to be fabricated—it is essentially a ceramic—and clad. Zirconium would serve as cladding. Rickover’s group had stimulated a new industry to bring that exotic metal’s production up to the new nuclear industry’s demands. A byproduct of zirconium production was the excellent neutron absorber hafnium, and hafnium would serve for Shippingport’s control rods. Then there was the midget welder.

“In building an atomic plant you spend a lot of time just looking for weak and leaky joints,” the Westinghouse project manager for Shippingport told a Saturday Evening Post writer. “One day an X-ray revealed a defect inside a bend of fifteen-inch pipe. It was a hard place to get at. We considered dismantling the pipe, but that would have been costly as the devil in time and money. Then we learned of a firm in Georgia that hires out midget welders for just such jobs. They sent us one who was just thirty-nine inches tall, and he crawled into the pipe and made a good solid repair.” The plant needed solidity. Water would be pumped through the reactor core at 45,000 gallons per minute, water pressurized to 2,000 pounds per square inch. The core was a hybrid: 115 pounds of bomb-grade U 235 metal as “seed” in plates at the center, ($1,000,500 worth of U 235 at $8,700 per pound) and 12 tons of natural uranium oxide in rods blanketed around.

Rickover sounded testy toward the end, early in 1957, before the Joint Committee came out to Pittsburgh to take a look. “I think we have babied a lot of people in this country too long with the glamour of atomic energy,” he told the Congressmen, “and I think as soon as possible we have got to get down to do it like any other business. ” Someone made the mistake of asking him about the new, larger power reactors then being designed. They were supposed to be more efficient. Rickover sneered. “Any plant you haven’t built yet is always more efficient than the one you have built. This is obvious. They are all efficient when you haven’t done anything on them … in the talking stage. Then they are all efficient. They are all cheap. They are all easy to build, and none have any problems. ”

He was candid about Shippingport’s problems. Costs had increased by at least fifty per cent. People, he said, had the idea that reactors were “much further advanced than they are.” Their designers and builders lacked much of the necessary “basic technology.” The “reactor game” hung “on a much more slender thread than most people are aware. There are a lot of things that can go wrong and it requires eternal vigilance. All we have to have is one good accident in the United States and it might set the whole game back for a generation.”

Shortly Shippingport was completed, in good time by any standard less rigorous than Rickover’s. “A little over two and a half years,” recalls Stanley Schaffer, “by comparison with today, which may be twelve to fourteen years from the time of a plant’s inception. I think it moved very expeditiously.”