A Demonstration At Shippingport

PrintPrintEmailEmail

December 2, 1957, fifteen years to the day after Fermi first operated his Stagg Field pile, Shippingport went “cold” critical, meaning its operators ran the reactor for testing but not for power production. They cut in power on December 18 at 12:39 A.M. By 3:00 AM the plant was producing more electricity than the 8,000 kilowatts it consumed. By seven in the morning it was generating 12,100 kilowatts. It would generate 20,000 kilowatts by that night and 60,000 within a few days. Budgeted at $47,700,000, it cost $84,000,000. Another $36,000,000 went to reactor research and development. Shippingport electricity came to fifty-five to sixty mills per kilowatt hour, although the AEC sold it to Duquesne at eight mills, a figure that stood in for the equivalent charge Duquesne would have paid for conventional fuel. Democrats in Congress, reported The New York Times , “have been urging a government program for building atomic plants, ” and so the A EC’s announcement of Shippingport’s coming on line emphasized its service to domestic power, missing a chance to score a “psychological triumph” to offset “the Soviet satellite achievement.” Sputnik had achieved earth orbit October 5,1957, two months before. Shippingport was “the world’s first full-scale atomic electric plant devoted exclusively to peacetime uses,” the AEC announced. The qualified superlative exempted Great Britain’s 70,000-kilowatt power reactors at Calder Hall in Cumberland, England, the first in the world of any consequence, which made not only domestic electricity but also plutonium for British bombs.

The Shippingport reactor, custom-built without regard to cost, worked efficiently and well. It is still in operation today, having been converted in 1977 to an experimental light-water system that breeds yet another fissile isotope of uranium, U 233, from the common element thorium. It was never economical, nor was its pressurized-water design necessarily the best model for the U.S. reactor industry to follow in scaling up to the behemoth 1,000-megawatt power reactors of today. “Most experts would say that [pressurized light-water reactors] are not the reactors of the future,” Henry Smythe remarked in Foreign Affairs in 1956, but they have been.

The private power industry signed on reluctantly after Shippingport, shocked by its demonstration of cost overruns. Through 1959 the AEC had spent $585,600,000 to push nuclear power; industry, by contrast, had spent $82,000,000. The national demand fell short of the AEC’s early estimate of 900 Shippingports nationwide by the late 1960’s, but nuclear power today, under continued indirect government subsidy, accounts for some 12.8 per cent of electrical capacity nationwide, and we consider it anew as an alternative to oil and a supplement to coal.

Atomic energy was debated from the beginning; it continues to be debated, and the debate has grown bitter. We have not yet made any lasting peace with its powers. We have not yet found a way to live with it or without it. Robert Oppenheimer, habitually an ironist, once called atomic energy “a somewhat tarnished symbol.” It is in truth a sort of Moby Dick among us, drawing hope and terror to its vast blankness like wounding harpoons.

 
“…the day when fear of the atom will begin to disappear from the minds of people.…”
 

MYSTERY AND HOPE