Disaster at a Distant Moon


Fred Haise, a fighter pilot and military test pilot who had practically lived at the Grumman plant in Long Island during the LM’s development, worked through the numbers. Aquarius had oxygen to spare. With all unnecessary systems powered down, the LM batteries would last at least four days. Water, however, was critical—not to drink, but to cool the LM’s electronics. Haise calculated that their 338 pounds of cooling water would get them back to Earth, but with just three hours to spare. For the first time, the crew and Houston dared to believe they might—barely—make it home.

Whipping past the Moon, the crew fired the LM’s engine yet again to speed their return. Their next struggle was against cold. With most systems shut down, heat drained into the void outside. Humidity rose, too, because the LM, built for two moonwalkers, could not handle the moisture exhaled by three men. A film of water condensed on every surface, and the cabin temperature quickly dropped into the mid-30s. Haise’s Teflon-coated coveralls offered little insulation in the chilly, damp cabin, even with layers of extra long underwear. “I’ve been a lot colder before, but I’ve never been so cold for so long,” he later wrote.

Cold and stress made restful sleep impossible. “For almost four days,” Haise says, “all we got were just catnaps.” Tethered in his thin sleeping bag in the tunnel between Aquarius and Odyssey, he would doze off occasionally, floating in a fetal position.

Shivering and exhausted, the crew faced yet another crisis. Their exhaled carbon dioxide would soon overwhelm the LM’s air scrubber system. Without a fix, the crew would asphyxiate hours before reentry. In a superb feat of mechanical improvisation, Houston engineers devised a makeshift adapter to connect Odyssey’s scrubber canisters to the LM’s system, then radioed clear instructions on how to build it with plastic, cardboard, gray tape, and socks. Ingenuity and teamwork would save the crew yet again.

As if fatigue and cold weren’t enough, Haise contracted a debilitating urinary infection due to a mix-up with Mission Control. To improve radio tracking, Houston had asked the crew to stop dumping urine overboard. The men then voided through a cuff-and-tube arrangement into plastic bags, but were never told that the request was temporary. The collection device pooled urine for hours next to Haise’s skin, and soon a burning pain accompanied any urination. The cold exacerbated his flulike aches and pains. Returning from working in the frigid Odyssey, “it took me four hours back in the LM before I stopped shivering,” wrote Haise.

Adrenaline and sheer determination helped Lovell, Haise, and Swigert pull off two more critical engine firings, sharpening their aim at a South Pacific splashdown. The team had even managed to recharge Odyssey’s vital batteries, using spare power from the LM. Nearly four days after the explosion, they worked methodically through the checklist, prepared with excruciating care in Houston, to resurrect the once-dead command module.

Haise didn’t know whether Odyssey’s essential reentry systems, soaked in condensation for days, would survive reactivation. “Every curve in a wire bundle, every connector, had a big glob of water clinging to it,” he remembered. He believed the fireproof insulation carefully applied to many Apollo components after the fatal 1967 blaze in Apollo 1 would prevent a disastrous short circuit.

Jettisoning the crippled service module shortly before reentry, the crew stared in amazement. The violence of the explosion three and a half days earlier had blown away an entire panel, shredding wiring and piping and buckling Odyssey’s high-gain radio antenna. “There’s one whole side of that spacecraft missing!” radioed Lovell.

Strapped into Odyssey, hurtling toward the atmosphere at 25,000 miles per hour, the crew cut loose their lifeboat. “I was proud of her. She was magnificent,” Haise later wrote. But the faithful Aquarius had no heat shield. “I was sad in a way to see her go to her own separate fate—burning up in the atmosphere.”

Lowered by three red-and-white parachutes, Apollo 13 plunged gently into the waters of the Pacific, 87 hours after the crisis began. The failed mission was one of NASA’s singular triumphs. What pulled the crew through? “Our training and experience were the keys,” says Haise. “From a professional standpoint, we were determined to recover the spaceship. . . The space program is built to handle problems, and dealing with them, in simulations and in flight, seasons you.” That kind of training “helps you function normally even when you’re aware of the serious situation you’re in.”

A couple of years later, Haise survived another brush with death: flying a vintage BT-13 trainer into Galveston, he was forced by engine failure to put down in a rutted pasture. Catching a wingtip, the plane cartwheeled and caught fire; Haise was burned over 65 percent of his body. Determined to fly again, he endured fourteen months of painful skin grafts and rehabilitation to return to full flight status. In 1977 Fred W. Haise, Jr., the consummate survivor, was at the controls as he flew Enterprise, NASA’s prototype space shuttle, to a perfect first test-landing.

A father of four with five grandchildren, Haise splits his time today between Houston, Texas, and Gautier, Mississippi. The 75-year-old Haise is often on the road, telling others how teamwork and refusal to accept defeat brought the crew of Apollo 13 back from the lonely reaches of deep space.