Professor Henry And His Philosophical Toys


He could have had his pick of research chairs at the best American universities; indeed he was offered several at this time. But Alexander Bache, one of the regents and a lifetime friend, wrote him: “Come you must for your country’s sake . . , Save this great national institution from the hands of charlatans.”

Bache’s plea struck a responsive chord. Henry was interested not only in the Institution itself, but also in the whole framework—or lack of framework—of American science. On a trip to Europe in 1837 he had seen the neglect with which American science, including his own efforts, was treated abroad. He noted that “in no civilized country of the world is less encouragement given to the pursuit of abstract science than in the United States.” Not only that, but there was little organization of knowledge: no repository for the collection of data, no bureau of standards. There was, in fact, no scientific “profession” in the United States.

In December of 1846 Henry accepted the post. For the next thirty-two years he guided the Smithsonian, the first organized center in the United States to maintain a full-time staff of researchers in a wide variety of fields. Each year Henry prepared the voluminous Smithsonian Annual Reports and wrote for the Institution’s Contributions to Knowledge and its Miscellaneous Collections . The scope of these reports is notable. Henry discusses, for example, the Yourba language of Africa, and a Yourba grammar and dictionary were published by the Smithsonian. He writes of his experiments with light, and then jumps into a discussion of the tuber potato and how it is affected by the sun.

Henry was much concerned with meteorology and its connection with scientific agriculture. He instilled in his assistants a voracious appetite for weather data, and in 1848 he inaugurated a system of longrange forecasting, using the telegraph. In 1858 the Smithsonian began making the nation’s first daily weather maps from data collected by observers across the nation. In 1859 Henry Wise, urged on by Henry, ascended in a balloon called the Smithsonian to make meteorological observations. In 1869, upon Henry’s recommendation, Congress established a national weather bureau.

So diverse were Henry’s interests that his studies encompassed the whole spectrum of science. He was interested in botany, in anthropology (although a hardshelled Presbyterian, he was one of the first to espouse Darwin’s cause), in archaeology, and in exploration (the purchase of Alaska was put through Congress largely on the basis of survey data supplied by the Smithsonian). He did brilliant original research in light and acoustics. On the other hand, his work often had a practical turn. He found, for example, that ordinary lard oil could replace sperm whale oil in the nation’s lighthouses, thus saving the government an estimated $100,000 a year.

Not the least of Henry’s accomplishments was the stimulating and encouraging effect he had on a number of American inventors, including Alexander Graham Bell, Emile Berliner, and Morse. Bell, characteristically, gave Henry generous thanks. “But for Joseph Henry,” he said, “I would never have gone ahead with the telephone.” Berliner, the inventor of the microphone and the flat phonograph record, was equally grateful. Morse was the exception. He insisted, during the development period of the telegraph, “My invention aboard the Sully is mechanical and mathematical. It had no more to do with chemical science than with geology or anatomy.” All he needed to know of a scientific nature, Morse continued, was Franklin’s discovery of conduction.

Many years later Morse persisted in his rash underestimate of the difficulties involved in developing a practical telegraph, although he had often confessed, explicitly or implicitly, that there was more to it than his rough sketches aboard the Sully indicated. Significant were his visits to Henry in Princeton, and his partnership with Leonard Gale, professor of chemistry at New York University. Morse was also indebted to Henry for the basic components of the telegraph: the electromagnet, the armature receiver, and the relay. But in spite of Morse’s extravagant claims to sole credit for the telegraph, Henry consistently backed him and frequently appeared in his behalf. In the 1847 case of Morse v. O’Reilly , Henry testified, “I thought his [Morse’s] plan was better than any with which I had been made acquainted in Europe.” And when Morse’s patent expired, Henry supported its renewal.