Technological Turkeys


In 1979 RCA announced that it was developing what it called Selectavision, a process that, using Thomas as Edison’s basic technique for recording sound but now hooked up to a television set, produced pictures as well. Edison, no doubt, would have loved it. The public did not.

Selectavision came onto the market in 1981, just when the VCR was catching on, and few people saw any reason to buy a machine that could play back but not record when they could buy one that did both for the same price. In 1983 RCA sold only 250,000 Selectavision machines, against 4,000,000 VCRs sold by RCA and others. The following year it canceled the project, losing $580,000,000 on what the company had once called its Manhattan Project. Certainly no one could argue that RCA hadn’t produced a bomb.

Selectavision represented the end of a very long technological trail, for it had been 102 years earlier, in 1877, that the original, brilliant idea had suddenly flashed into the mind of Thomas Alva Edison. He had an assistant make a gadget consisting of a grooved metal cylinder that rotated and moved freely along a shaft when the shaft was cranked. To either side were diaphragms with a stylus in the middle of each that could come into contact with the groove on the cylinder.

Edison wrapped the cylinder in tinfoil, placed the stylus in the groove, and, turning the crank, shouted close to the diaphragm, “Mary had a little lamb, its fleece was white as snow.” Then he placed the other stylus at the beginning of the groove and cranked the cylinder a second time. Partially deaf since childhood, the inventor heard nothing and thought the experiment had failed. But the others had heard. Faintly but unmistakably, the machine had spoken in Edison’s voice.

Gott im Himmel ,” said Edison’s assistant.

The idea that sound might be captured and preserved for posterity had been considered as early as the 1830s, when light was first being captured and preserved by photography. But it was forty years before Edison discovered a practical method of doing so, a method both simple and profound.

The sound waves of Edison’s voice caused the membrane of the diaphragm and its attached stylus to vibrate. As it moved along the groove on the cylinder, the vibrating stylus incised a pattern of hills and valleys in the tinfoil. When the cylinder was replayed, the pattern now made the stylus and the membrane vibrate, re-creating the original sound waves.

The inventor saw the commercial potential immediately, for he realized that “music can be crystallized as well.” He told a New York newspaper reporter, “I’ve made a good many machines, but this is my baby, and I expect it to grow up and be a big fellow, and support me in my old age.”

Edison’s machine caused an immediate sensation. President Rutherford B. Hayes was so astonished by it at a late-night demonstration in the White House that he insisted that his wife get out of bed to hear for herself. But while it was a sensation, it was still just a gimmick. It would be another decade before Edison’s invention was a viable commercial product.

In 1885 C. A. Bell and Charles Sumner Tainter discovered that wax worked much better than tinfoil as a medium for recording sound waves. In that decade also Emile Berliner first used a flat disk with a spiral groove rather than a cylinder with a helical one. Around 1900 lateral recording, in which the recording stylus vibrates back and forth rather than up and down as Edison’s had done, came into use and much improved the fidelity. By the time of the First World War, the 78-rpm record had completely displaced the cylinder and could play four and a half minutes on a side.

At about the same time, Lee de Forest invented the electrical amplifier, and by the early 1920s electronic methods had begun to replace acoustical recording and reproduction. In 1948 the long-playing record made it possible to play thirty minutes of uninterrupted music, and in 1958 stereo was introduced. By using both Edison’s original up-and-down motion and the later lateral motion, two channels could be recorded in the same groove. For the first time reproduced music began to sound much like live music.

But stereo was the last major elaboration of Edison’s seminal idea to be commercially successful. Twenty years later RCA pushed the technology one step farther still and stumbled into disaster. Today digital technology is fast replacing Edison’s analogue method of recording, and the digital videodisk, with its many advantages over videotape, is beginning to find the place in the market that Selectavision never found. CDs now outsell long-playing records, and in a few years the latter will be history. Thanks to Edison, however, the voices and music of a century will be with us forever.

The problem with Selectavision was that it pushed a technology to its limits when another, better technology was already beginning to supplant it. This is hardly the first time this has happened. In fact, exactly the same thing occurred in the history of sailing ships, with similar economic but quite different emotional results.

The full-rigged ship had come into being in the late fifteenth century. Over the next three centuries it was slowly refined and became the single greatest instrument in the spread of European civilization and power around the world. By the second decade of the nineteenth century the standard commercial sailing ship was bluff-bowed and full-bottomed to maximize its cargo space, with a length-to-beam ratio of only about three to one. Such characteristics did not make for speed.