“we Get The Technology We Deserve”


Then there’s a friend of mine who is working on the history of the development of missiles. He is using the concept of the reverse salient, and he says it’s working well. He says that the engineers look at missiles as systems, and they are scanning missile technology, looking for areas which have fallen behind the general advance and which keep the entire system from functioning as efficiently as it might. I think the reverse salient is a concept that is used unconsciously by a number of inventors and engineers. They may not think of what they are doing in terms of reverse salients; they often think of it in terms of identifying problems. But one has to take a systematic view in order to see these problems.

You don’t know that there is a problem unless it occurs somewhere along a line or broad front. The reverse salient has to be behind something. You can’t analyze it if you only look at it as through a microscope. If you looked at Verdun through a microscope, you would say, “What’s the problem?” But when you look at the whole system, then you can see what is behind and what is ahead. This is why so many of the successful inventors are holistic—they are using this concept of the reverse salient, although they may give it another name.

The famous immigrant inventor and pioneering electrical engineer Charles Proteus Steinmetz—rumpled, bushy-haired, physically deformed—has always struck me as an improbable figure. I think it says something for General Electric that they took him into their corporate setup in the early 189Os and made excellent use of his talents.

Steinmetz is an anomaly. Most inventors and engineers of the 188Os through the early 190Os were rather conservative in dress, rather straight in behavior, rather conforming in their political attitudes. Steinmetz was a socialist, his clothing was unorthodox, and his behavior was far from commonplace. He grew orchids and was interested in pet alligators. Why did General Electric, which was accustomed to hiring conservative types, take him on? Because, I think, there was some innate sense at General Electric that a large organization, in order to change and grow, needs to cultivate the noncpnforming character . After all, what is a major invention but a change in the status quo? General Electric apparently realized that it might become too conservative in its attitudes toward technology—which is to say, in its attitudes toward change—unless it cultivated outsiders, people who saw things “differently.” I’m sure it was an irritant to the management to have a nonconformist like Stéinmetz on the staff. General Electric dealt with Steinmetz in an interesting way. It took him out of the routine managerial structure and gave him his own organization, which was a small consulting engineering unit. His nonconforming attitudes and behavior were dealt with by giving him a special place, an administrative, managerial niche, outside the highly organized, routinized structure. I think that showed great insight on their part.

So if we empty the word radical of any political connotation, it would be fair to say there’s a place for radical, nonconforming approaches to technology?

Yes, and 1 think you can make a useful distinction between conservative and radical inventions. Conservative inventions tend to correct reverse salients. Conservative inventors are those who nurture or watch over an advancing system. They scan the front and see where the corrections need to be made. Large corporations tend to preside over advancing technological fronts that have what 1 call high momentum. For example, General Motors has been presiding over the development of the automobile. Many of the inventors at General Motors have been conservative in that they are essentially correcting, making minor adjustments in, a technology that has a tendency to hold to a set course.

But a radical inventor, like Steinmetz, marches to a quite different drummer. He or she tends to develop systems that are new and different and that are often rejected by the industrial community because they don’t fit into a large, ongoing industrial enterprise. A friend of mine who is a major inventor used to work for a large corporation that not only encouraged him to leave but also funded him in setting up his own invention “shop”! The corporation’s aim was to get my friend out from under the firm’s heavy conservative momentum, its weighty bureaucratic structure. Now people who dream up radical inventions fail more often than the ones who create conservative inventions. So it takes an enlightened management to nurture “radicals” such as Steinmetz.

I also consider Admiral Hyman Rickover a radical inventor. Of course, his realm is not pure technology—it also takes in management and other aspects of industrial enterprise. But he had his now-famous nonconformist approach. Rickover often has been radical, and he has upset the status quo. As a result, he has often had to function outside of existing institutional structures in order to survive. For example, in the Navy, Rickover had to create his own niche. He had to create his own organization, because existing organizations could not adapt to such radical proposals as his plan for a nuclear submarine. Just as Steinmetz was not a typical American engineer, Rickover was not a typical American naval officer. Both men were emphatically outsiders.

Another striking figure was Elmer Sperry. He never became the household name that Edison is, though their lives overlapped. What made you write a massive biography ( Elmer Sperry: Inventor and Engineer ) of this man, who at the time was so little remembered?