Back To The Future

Your keyboard was worked out around 1870. The shape of your computer screen came out of Edison’s lab.

QWERTY became standard and stubbornly remains so. A professor of education at the University of Washington named August Dvorak invented what he believed was a faster keyboard in the 1930s, but it has never gained popularity. It’s probably not even faster; the best case for its superiority was made by a series of studies conducted for the Navy in 1944 by none other than Lt. Comdr. August Dvorak, and they were full of possible biases. A meticulous 1956 study showed no strong advantage for Dvorak, certainly none that could justify the enormous costs of retraining typists and replacing keyboards everywhere.

QWERTY has obvious deficiencies for use with your computer today—for instance, you can’t type the accented letter é without memorizing a combination of keystrokes or looking up a chart of symbols on your computer. But its biggest disadvantages have all been addressed over time, and it’s hard to imagine that it won’t still exist a century from now.

Likewise the shape of your computer screen. It came out of Thomas Edison’s laboratory, though Edison would surely be as surprised as anyone to learn that. It was conceived by a young laboratory assistant named William Kennedy Laurie Dickson during the invention of motion pictures.

Dickson started out trying to record movies the way Edison captured sound, on a cylinder. This proved impossible since the pictures would have to be microscopic, so he gradually increased the image’s size and developed moviecamera machinery to work with it. By December 1891 he was experimenting with the latest celluloid film and was settling on strips 1 3/8 inches wide and fifty feet long. He then decided on an image one inch wide and three-quarters of an inch high—the proportions of your computer screen.

Why that ratio? “He never said why in his letters,” says Paul Spehr, a motionpicture historian who is writing a biography of Dickson. “But he was first of all a photographer. He had been Edison’s photographer for seven or eight years. He had a strong sense of composition and was accustomed to photos where the bottom was always a little shorter or longer than the vertical. It was an aesthetic decision.

It was obviously a good one, for as more and more people got into making movies, they kept adopting Dickson’s standard. When French companies started manufacturing movie film, they translated 1 3/8 inches into its metric equivalent—thirty-five millimeters. When Hollywood started making movies, it picked up the standard. Then in 1941 the National Television Standards Committee laid down the rules for commercial TV and chose the same shape, so that television sets could play movies and work with existing film equipment. (Movies changed to wide-screen in the 1950s only to be different from TV.) And when people started building computer monitors, they naturally used TV screens, and Dickson’s format lived on yet again.

As with your computer keyboard, your computer monitor has its limitations. Most likely your two main uses for the computer are to make documents to print out on 8 ½-by-11 paper and to see Web pages that are much longer than they are wide. You might be able to do either thing better with a vertical screen. But like your keyboard, your monitor had its major deficiencies addressed long ago, in this case with scroll bars and HOME and END keys. So there’s no clear reason why the format should change any time soon, even if it was conceived for an entirely different purpose more than a century ago. And it probably won’t.

Both your keyboard and your monitor took shape in an almost unrelated context in a vastly different time—your keyboard an attempt to work around mechanical difficulties that haven’t existed for more than a hundred years, your monitor an aesthetic choice by someone used to getting pictures with glass plates and bellows. But both Sholes and Dickson made choices that were good enough to last. And generations since have adapted to and revised those choices, altering them the very little bit they needed to—and not one bit more or one moment sooner. Which is exactly what happened with Y2K.

The epoch of the nanosecond reaches back a long, long way. And sometimes it holds on tenaciously.