A Demonstration At Shippingport


There matters stood until some years after the war—necessarily, given the times. The bombs that destroyed Hiroshima and Nagasaki came off the bottom of the bin. More were at least weeks away from fabrication and delivery. The Japanese understandably chose not to call our bluff. Immediately after the war, then, and into at least the early 1950’s, almost the entire U.S. production of uranium and plutonium was dedicated to weapons. In 1953 U.S. atomic energy facilities busy at weaponry consumed no less than 2.5 per cent of the total national electricity supply. Some of the urgency, not to say the hysteria, of those years around 1950, when the Soviet Union was testing atomic bombs and we were scrambling to build a thermonuclear weapon of any, even of inefficient, design, resulted from our sense of not having stockpiled enough. The “national resources” that the Tolman Committee sought to preserve were the bomb materials that a mere power reactor would burn. The balance of terror was hardly understood and had not yet been struck.

Evidence on this point is scarce but not lacking. Gordon Dean, chairman of the Atomic Energy Commission from 1950 to 1953, wrote suggestively in his 1953 book Report on the Atom , “As a result of this cold war [with the Soviet Union] and this armaments race, the American atomic energy program has been largely a weapons program carried on in secrecy and with the utmost urgency.” Comparable statements might be adduced. Most convincing is an event that led directly to the notorious 1954 Oppenheimer security investigation: that is, the 1949 recommendation by the AEC’s General Advisory Committee, of which Oppenheimer was then chairman, that the United States not proceed with H-bomb development, a recommendation President Harry S. Truman pointedly ignored. The General Advisory Committee, made up of eminent scientists, wasn’t pacifist and hadn’t gone daft. It simply understood that the inefficient H-bomb design then at hand would use up too much precious bomb material for its trigger—bomb material still in relatively short supply, bomb material that the committee believed could be put to better use diversifying the nation’s existing atomic arsenal.

As we were short of fissile materials in the years immediately after the Second World War, so were we short of facilities and personnel. Civilians at Chicago and Los Alamos and Oak Ridge, confined to their posts during the war, swarmed back to wherever they had come from, and it was all the lame-duck Manhattan Engineering District could do to hold its atomic energy operations together. Scientists especially left the quasi-military organization they had served at Los Alamos. Some of their pent-up resentment at its restrictions, and perhaps also some of their guilt, was channeled into the battle royal waging in Washington in the winter of 1945–46 over the issue of civilian versus military control of the atom.

“I think we have babied a lot of people in this country too long with the glamour of atomic energy, and I think as soon as possible we have got to get down to it like any other business.”

The result of that battle was the Atomic Energy Act of 1946. That remarkable act made atomic energy in all its manifestations an absolute monopoly of the U.S. government. All discoveries concerning atomic energy were to be considered “born” secret—counted secret until formally declassified—and the penalty for divulging atomic secrets was life imprisonment or death. All fissile materials became the property of the U.S. government, as beached whales became the property of kings. No one might build or operate a reactor except under government contract, nor might such devices be privately owned. Authority over atomic energy was vested in a commission of civilians, the Atomic Energy Commission, responsible to the President —“the most totalitarian governmental commission in the history of the country,” one historian has called it. Proponents of the bill that became the Atomic Energy Act had argued that atomic energy was too important to be left in the hands of the military. It apparently was also too important to be conveyed into the hands of the public.

Some modest efforts toward designing a power reactor had begun at Oak Ridge in 1944. Dr. Farrington Daniels of the University of Wisconsin conceived of a high-temperature reactor assembled from natural uranium and graphite and cooled by either helium or liquid bismuth. Planning for a pilot model continued immediately after the war. The Daniels pile was never built, but it figured indirectly in the subsequent development of nuclear power. The Navy dispatched a hot-headed forty-five-year-old career officer to Oak Ridge to study it, and Captain Hyman George Rickover took up the reactor trade.