A Demonstration At Shippingport


Technically more important was a curious research reactor built at Los Alamos in the winter of 1943–44. It consisted of uranium densely in solution with less than four gallons of ordinary water; the resulting “soup” was contained in a stainless-steel sphere some twelve inches in diameter. The uranium used in this “homogenous” reactor had been “enriched” by differential separation of its isotopes from .07 to 15 per cent U 235 (and in a later experiment, to 88 per cent). The enriched uranium was far more efficient for chain reaction than natural uranium—making the reactor far more compact—and enriched uranium would be thereafter the material of choice for U.S. reactors of every kind. Canada began building reactors of natural uranium and heavy water, Great Britain of natural uranium and graphite; the United States ultimately chose enriched uranium and “light”—ordinary—water, and in this way also, power initially would compete with weapons for the existing uranium supply.

If bombs had clear priority to supplies, it was also true that no one was much interested in nuclear power in the first years after the war except the Air Corps and the Navy. Nuclear power for aircraft (which fortunately never flew) or for naval vessels might be valuable at almost any price, but nuclear power for the commercial production of electricity simply wasn’t economical. No one knew yet precisely what such electricity might cost, but anyone in the power industry could see that it was likely to cost more than the four to eight mills per kilowatt hour (a mill is a tenth of a cent) that was typical of nonnuclear electricity in the Eastern United States.

Yet power enthusiasts in Congress grew restless. Cheap electricity from the atom (as they imagined it) was something they could send home. The Congressional Joint Committee on Atomic Energy, slowly becoming aware of its unusually broad mandate not only to propose legislation but also to monitor and control, met in extended hearings on the state of the atomic energy program in 1948 and wasn’t happy with what it found. “The Joint Committee believes,” it complained, “that reactor development should proceed with all possible speed, and disappointment therefore follows from the reflection that, in two and a half years [since the creation of the AEC], the Commission has not broken ground on a single new-type high-power reactor.”

The AEC took heed. Early in 1949 it established a Division of Reactor Development. It began carving out a National Reactor Testing Station from the barrens of Idaho. It authorized an experimental breeder reactor—a reactor that would “breed” more plutonium than it would burn uranium—to be built there, along with a materials-testing reactor to study the effects of radiation on the materials from which reactors might be built, a necessary step to large-scale power production. Most significantly, and out of character with these other experimental projects, it directed Westinghouse in Pittsburgh to begin work on a seagoing power reactor for submarines. The instigator of the Submarine Thermal Reactor project was Hyman Rickover, of course, operating out of his own hip pocket from a special-assistant position within the Navy’s cavernous Bureau of Ships. Busy making bombs, the AEC had wanted no immediate part of building nuclear submarines. Nine months of Rickover’s carefully orchestrated prodding moved the commission to relent.

If any single person has contributed more than any other to the uneasy nuclear standoff between the United States and the Soviet Union that passes for nuclear truce, that person is the American engineer and naval officer Hyman Rickover, because Rickover was largely responsible for the submarines that constitute our most invulnerable picket line of nuclear deterrence. Such is commonly known. Less commonly known is this: Rickover was also largely responsible for the founding technology of U.S. commercial nuclear power. He personally directed the building of the first nuclear submarines; he personally directed the building of the first large-scale civilian power reactor.

Rickover was born in Russia in 1900. His father was a tailor who emigrated with his family to the United States, to Chicago, in 1906. Young Rickover worked his way through high school as a Western Union messenger. A congressman arranged his appointment to Annapolis, from which he graduated in 1922. He served on a destroyer, then on a battleship. He took a master’s degree in electrical engineering at Columbia. He attended submarine school at the old age of twenty-nine and served on submarines. In 1937 he was awarded a coveted “Engineering Duty Only” billet within the Navy, a position that corresponds to appointment to the Army’s Corps of Engineers.