Inventing A Modern Navy

PrintPrintEmailEmail

This is the story of the efforts of naval officers to bring steam, coal, iron, steel, and high explosives together in satisfying combination during the last century. It was a time of transformation and change when the U.S. Navy made its way from the old sailing ships of the line to the dreadnought, also known in its first American version as the Skeerd of Nuthin . What we know of all this is still pretty much what the historian Frank M. Bennett told us in 1896 in his remarkable book The Steam Navy of the United States . But the subject is especially important today because it may serve as a latter-day cautionary tale when technology is more complicated, more powerful, and far more omnipresent than in the days of those old ships and sailors.

During the War of 1812, Robert Fulton persuaded the President and the Congress to build the Demologos , as the first steam warship in any navy. Because the war ended before this “steam battery” actually was finished, she never engaged in any hostile action. Still, in her subsequent trials the ship not only “exhibited a novel and sublime spectacle to an admiring people” but also demonstrated her ability to maneuver effectively in “defense of ports and harbors.”

The Congress was very impressed. In 1816 it provided for the “ gradual increase of the Navy” over the next six years by authorizing the building of three similar vessels. The word gradual was interpreted liberally. Almost twenty years later the secretary of the Navy found it necessary to ask the Board of Navy Commissioners to take “immediate steps” to fulfill the congressional intent. Officers, puzzled from the beginning by what to do with a steam battery in time of peace, had resolved the matter by doing nothing; for the rest of her life the Demologos was used as a receiving ship tied up at the Brooklyn Navy Yaro better prepared to act than in 1816.

As a start the board advertised in several newspapers for someone to help by “furnishing the steam engines for the steam vessel now building.” When no one came forward in response, the commissioners explained to the secretary that “in their ignorance” they had probably not made clear what they were looking for. In time word of this ill-defined opportunity got about, and someone recommended a man named Charles H. Haswell. He appeared before the board and impressed the members by the excellence of his knowledge, his testimonials, and the elevated tone of his general conversation. In the end the board members strongly urged the secretary to appoint him, while shrouding their approval in the kind of opaque prose designed to get bureaucrats off any possible future hook. “Grave doubts,” wrote Bennett in his history, were expressed as to Mr. Haswell’s “ practical familiarity with the manipulation of marine machinery, from which circumstance we of this day, who not infrequently encounter the same criticism, may see that mistrust, inconsequential as it is, is by no means new.”

 

The secretary interpreted this message to mean that the board probably could not find anyone better qualified. He probably was right. Charles Haswell, after his early schooling, had entered the shops of the great French-born engineer James Allaire, where he had learned all there was for anyone to know at the time about how to put steam engines together. So on February 19, 1836, Haswell was directed to prepare working drawings of boilers to be installed in the steam warship then building at the Brooklyn Navy Yard. He was to perform this service within sixty days in return for a payment of two hundred and fifty dollars. Six months later Haswell was appointed chief engineer to supervise the design and construction of all the machinery that went into this new ship that was to be called the Fulton . He was twenty-seven years old, and he was the first engineer to be appointed to the U.S. Navy.

When the Navy’s first engineer came aboard ship, nobody knew where to put him.
 

If the technical universe that Haswell then entered was not quite a vacuum, it nevertheless was little more than an odd jumble of bits and pieces that no one knew much about or what to do with. If it was a ship’s hull, it could be built of wood or of iron. If it was a gun, it could be made of iron or perhaps of steel and it could be a smoothbore or some other kind of barrel not yet clearly defined. If it was a propeller, it might have two, three, four, or six blades or, better still, be a paddle wheel. If it was an engine, it might use either high- or low-pressure steam and the cylinders could vary from a nineinch stroke and a thirty-six-inch diameter to a thirty-six-inch stroke and a sixty-five-inch diameter, and it could be connected to do work in any number of elaborate ways.