Inventing A Modern Navy


In this stagnant atmosphere strange ideas developed and stranger decisions were taken. Someone came up with a training manual on the art of repelling boarders. It was said by some that there was no point in armor plate; it was believed by others that the ram would become the capital ship of the future. And there was always wood and sail. At one point a Navy board recommended to the secretary that ten vessels should be built of “live oak frames” because there was a “large supply of suitable timber at present on hand in Navy Yards.” At this time also there was a general order that “all naval vessels” built thereafter should have “full sail power.” And a year later Navy regulations stipulated that steam should be used only when “absolutely necessary.” Should such occasions arise, the regulations specified, a captain should enter his reasons for starting the engines in the logbook and do so in “ red ink .”

In 1877 the secretary of the Navy, George Robeson, summarized the nature of the whole period in a report that concluded with the thought that “we should congratulate ourselves on the fact” that the United States had not, “like other maritime nations,” been building fleets of “armor plated, gun bearing vessels.”

The other maritime nations were indeed doing remarkable things in the years from 1860 to 1880. They had made astonishing improvements in many parts of a warship—hulls, armor, metals, boilers, engines, propellers, guns. Those parts may not yet have fitted very nicely together in completed ships, but the activities of these other nations had produced a true revolution in naval architecture.

These alien developments finally bestirred the United States from its self-congratulatory torpor and forced it to redefine the naval reality. A variety of special interests in Congress, in industry, and in the Navy conspired to obtain legislation in 1883 authorizing the construction of four steel vessels. This was the historic White Squadron, regarded ever since as the material manifestation and shining symbol of the New Navy. It was also a demonstration of the psychic pain and practical difficulties of transition. All the ships, though propelled by steam, were rigged for sail. The three warships (the fourth was a dispatch boat) had thick main decks of steel and were called protected cruisers—but there was no armor plate around the hull. The Chicago , which was the only one to reach the designed speed, had a boiler arrangement “familiar in the American backwoods as the generator of power in sawmills.” There was continual trouble in the building of these ships, and their construction was taken out of the hands of the original contractor. But all in all the White Squadron was a reassuring symbol of things to come and a very important first step in the new direction.

One good consequence of the experience with these ships was the conclusion that it would be useful to find out more about what other maritime nations had been doing. When the Charleston was authorized in 1885, an American officer, then in England, was told to look around the British yards to see if he could find some plans that would fit the general specifications of the vessel. At Sir William Armstrong’s firm in Newcastle upon Tyne he found the drawings for a warship the company had built for Japan. He purchased them and brought them back to the United States. Here it was discovered that the engines were a composite of machinery that Sir William had built for the ships of three different nations; and it was further discovered that the separate parts of this composite failed “to agree with each other as to proportion and location.” From such experiences it was soon learned that a better way of achieving the desired end was to send officers abroad, especially to England, to study the current practice in such fields as hull design, metallurgy, steam power plants, and ballistics and then have the men come back and apply what they had learned to engineering developments at home.

In the years that followed, there were more than enough developments to keep the Navy officers busy. The gradual recognition of the uses of experiment and the growing body of theory was making itself felt throughout American industry. Using these resources, the New Navy constructed a series of ships that were successively larger, faster, and more powerful than their predecessors. But a major problem continued to complicate this progress. Advances in the various components of a warship—propulsion systems, building materials, hull designs, and guns—made it ever more difficult to bring all these changing and interacting components into an integrated whole that worked.