Saving The Statue

PrintPrintEmailEmail

The most visible exterior change will be the replacement of the torch, and it is a typically complex matter. The flame originally had a skin of solid copper like the rest of the statue, and it was gilded either before it went up in New York or not long after. As soon as the statue was unveiled, Bartholdi began to express his displeasure at the weakness of the torch’s lighting, which was mounted on its balcony. Efforts were made to improve the lighting over the years, and in 1916, Gutzon Borglum, the sculptor of Mount Rushmore, was commissioned to cut out most of the copper and install six hundred pieces of yellow cathedral glass. The result was a satisfyingly bright flame, lit from within, and a torch that has never since been waterproof. Water leaking in through the years has caused severe corrosion and has damaged much of the armature and saddles down in the arm. Most of the torch, with its decorative filigree, was made of even thinner copper than the rest of the statue, and all of it is more vulnerable to the effects of weather—in fact, rain and snow usually come at it from beneath and then hit all sides of it at once.

ALL OF THE TORCH except its handle—that is, the flame, the balcony, and the cap beneath the handle —will be removed, probably by helicopter, and rebuilt. Three types of replacement flame were originally proposed: one of gilded copper; one of copper and glass, as exists now; and one of 100 percent glass, either molded solid or pieced together, carrying Borglum s idea one step further. The molded-glass flame was dismissed early on as too expensive. The idea of reconstructing Borglum’s version has a definite historical validity, since Borglum’s is the flame the statue has carried throughout most of its existence, but making such a structure lastingly watertight is still difficult today. Gilded copper has had the hearts of the architects for a combination of reasons: its faithfulness to Bartholdi’s vision, its attractiveness, and its relatively easy maintenance (though it is uncertain how to make the gilding stay on for more than ten years). The National Park Service has demanded that whatever new flame is chosen be capable of shining just as brightly as the glassed flame does today. A choice has not yet been announced.

 

In addition to the flame’s composition, there is the problem of re-creating its original shape. Its form was modified when the glass was put in, an unsightly peaked roof was added in the middle, and the whole thing has sagged since. Photographs and early models are being used as the basis for plaster sculptures of the flame. Ultimately a miniature will probably be enlarged and formed in hammered copper by the same dependable techniques used when the statue was built.

IF THE TORCH job is the most visible part of the restoration, putting in new armature bars and saddles is the most delicate and time-consuming. When the decision was made to replace them, Blaine Cliver requested that a few be saved for history’s sake, so in the heel of Liberty’s right foot there will continue to be original iron armature pieces and saddles from the 1880s.

As for the great majority that are going, “we started with the feeling that we wanted a ferrous armature, if feasible,” Cliver says—again for history’s sake, since the original pieces are iron. The saddles will, as before, be copper. The team doesn’t want to depend on insulation to protect the pieces from one another, so a search has been made for an alloy for the armature that will, in Despont’s words, “stay very close to the mechanical qualities of the old puddled iron in terms of flexibility, not to make the statue any more rigid or supple, and at the same time be compatible with the copper and not rust.” At first a copper-nickel alloy was considered; it proved too heavy, and the choice came down to a high-grade stainless steel or ferallium, both of which underwent numerous tests. The latter is an iron and stainless steel alloy that was finally rejected when it was found to be too hard to work. It will be used, however, for replacement flat bars.

Replicating the shape of each armature bar—every one is different—is a challenge. Since the whole structural system works as a finely coordinated unit, only 4 of the 1,600 bars will ever be removed at one time, and an elaborate schedule is being worked out so that those four pieces always come from four different levels and four different sides of the statue. They will probably have to be duplicated before they are ever removed, and taken out only when their replacements are ready. In the end, the means of duplicating them will be up to a contractor, subject to approval all around, but the engineers and architects have been investigating the possibilities. One high-technology method, says Despont, involves “taking a photograph from at least three sides at once, and those photos are fed into a computer, which extrapolates and takes all the curves and builds a threedimensional model, using a robotic arm to cut into wax. ” Landsman, however, doubts that that technique will be used. “We’ve been through laser surveying, fiberglass wet casts, and we’ve ended up in a really nineteenthcentury manner,” he says. “We think the most efficient way is to have a craftsman with a piece of soft metal come in and hammer away and come up with a template. ” Moutard, for one, has been saying that all along.