Scientists At War

PrintPrintEmailEmail

Arnold announced to those assembled that he had thirty million dollars left over from his wartime research budget. He wanted to divide that into three packages of ten million dollars each for projects that would study techniques of intercontinental warfare. He pledged one of the packages to Douglas: that would be enough to finance the new group and to keep it going for a few years, free from pressures to exhibit its achievements prematurely. Douglas wanted to start quickly, before the inevitable peacetime economy measures drastically reduced his company’s output. Frank Collbohm said that he would hunt around for someone to direct the outfit and would lead it himself in the meantime. Arthur Raymond came up with the name RAND, standing for “Research and Development.” Later, Gen. Curtis LeMay, noting that RAND never produced any weapon, would say that it should have stood for “Research and No Development.”

A PERFECT THEORY FOR THE COLD WAR

BY THE FALL OF 1947 the RAND staff had grown to one hundred and fifty. For anyone interested in some vague combination of mathematics, science, international affairs, and national security, RAND offered an ideal setting. There was an intense intellectual climate but no teaching obligations or boring faculty meetings. There was access to military secrets but no military officers from whom to take direct orders. There were brilliant minds working to solve fascinating problems. It was freewheeling, almost anarchic, virtually without hierarchy or separation among disciplines. One man invited to RAND in 1947 wrote in a memo: “I have been at RAND for three exciting days and I would like to become part of it. Right now RAND is part solid, part liquid, and part gas.…” It was run under Air Force contract, but that was all right. The Air Force was the only service that had the atom bomb; American security policy was based almost entirely on the bomb; therefore, the Air Force policy IDOS essentially national security policy, and RAND was the Air Force center of ideas.

Early in 1947 Olaf Helmer of the RAND mathematics division came up with an idea that would change the complexion of the project. Helmer was a German refugee with two Ph. D.’s, in mathematics and in logic, who emigrated to the United States in 1936, taught mathematical logic at the New School for Social Research and City College of New York, and during the war worked for a group on Fiftyseventh Street in New York called the Applied Mathematics Panel, the OR unit of the Office of Scientific Research and Development. Helmer had been at RAND for a short time when he reflected on the possibility that the organization might be too limited in its outlook. Military problems, after all, were not just engineering or mathematical or physics problems; they involved questions that might better be investigated by economists or political scientists as well.

John Davis Williams, head of RAND’s math division and a former colleague on the Applied Mathematics Panel, particularly liked Helmer’s idea and made it his own. Williams, who had come to RAND in 1946—he was the fifth employee—weighed close to three hundred pounds. Trained as an astronomer, he was also an excellent pool shark; he would later write an article on TV wrestling for the promotional issue of Sports Illustrated, and he loved to supercharge and drive fast cars. He had loaded a Cadillac engine into his brown Jaguar sports coupe and relished few things more than taking it out on midnight test runs at 155 miles per hour. (Williams might also be credited with being the man who first applied radar to automobiles, building his very own “fuzz-buster.”)

Williams had for some time been particularly keen on a mathematician named John von Neumann. One of the broader intellects of the twentieth century, von Neumann was a cheery, roly-poly man, short and round-faced as a cherub. As a teen-ager, he was known to his friends as “Mr. Miracle” because of his great love for inventing mechanical toys. During World War II he was chief mathematical wizard at the Manhattan Project. After the war he taught at Princeton but still served as a consultant at Los Alamos in the Theoretical Division, or T-division, where—along with Edward Teller, Enrico Fermi, Lothar Nordheim, and others—he became enraptured with the problems and principles of fusion energy and the hydrogen bomb.

At one point fusion experiments were bogged down by the almost impossibly complicated mathematical calculations that the scientists had to work out. For assistance, they had only the ENIAC computer, whose memory could hold a mere twenty-seven words and which was constantly on the blink. Von Neumann invented a new electronic computer that could hold forty thousand bits of information, recall them later, and identify errors in the instructions that anyone fed it and then correct them. When von Neumann displayed the machine to the Atomic Energy Commission, he gave it the high-sounding name of Mathematical Analyzer, Numerical Integrator and Computer. Only later did officials see that von Neumann, forever the practical joker, had dubbed the machine with a picturesque acronym.

A problem that previously would have taken three people three months to solve could now be worked out by the same three in ten hours. The research on the H-bomb was, thanks to MANIAC, lifted out of its slump.