The Voting Machine Problem


It was fitting that when Y2K disaster finally struck, it did so in a way nobody had foreseen—and in a way nobody even recognized as Y2K disaster. But that was what the electoral mess in Florida really was. It was a breakdown in the ability of obsolete but essential computerized systems to accurately meet the needs of the society, and though it didn’t specifically involve trouble handling the number 2000, in every other essential it was exactly what people had been predicting a year before. It arose from inherent flaws in a 1960s-era computer system’s way of handling information with punch cards and from the fact that that computer system was unnecessarily still in use decades later; it was triggered by the system’s inability to cope with a specific situation arising in the year 2000; and it generated a level of anarchy that government itself seemed at a loss for a while to contain.

The only difference was that it involved not the two-digit dates originally designed to fit on punch cards but the punch cards themselves. And for all that has been said about how we avoided Y2K crises, how we didn’t avoid this one is just as illuminating.

The use of modern voting machines began in 1892, in Lockport, New York. Secret election was still a fairly new concept, and only in the previous half-century had paper ballots come to prevail nationally over “open voting,” in which the voter simply said out loud whom he preferred. As paper ballots proliferated, their counting grew more cumbersome, and Jacob H. Myers, of Rochester, New York, was the first inventor to come up with an effective replacement that could both mechanize tabulation and impede the fraud that paper ballots invited. He was a maker of safes, and his initial voting machine was a kind of a huge walk-in safe, 10 feet square, with two doors. You went in one door, locked it behind you, punched keys to pick your candidate, and exited by the other door. The keys you punched were mechanically linked to counters, so at the end of the day polling officials had merely to read out the results.

The machines were terrifically expensive—each one cost $600, the equivalent of about $12,000 today—but they caught on nonetheless. By 1920 most of upstate New York was using them, and by 1960 most of the United States was recording votes mechanically. Myers’s invention survives today, in more compact form, in the mechanicallever machines still used by about 20 percent of the electorate. Nobody has manufactured them, though, or even manufactured replacement parts for them, for decades; most of the tens of thousands of them in use are between a quarter- and a half-century old.

The next important generation of voting machine was the punchcard device, the machine that caused the trouble in Florida. It didn’t come along until 1964, more than 70 years after Myers’s invention and very late in the era of the punch card. Punch cards had been around since the beginning of the nineteenth century, when a French inventor named Joseph-Marie Jacquard used cards with holes in them to control the way a loom wove patterns in fabric, an innovation that swept the textile industry. Within the century, an American named Herman Hollerith developed punchcard technology to conduct the 1890 census, the first use of the cards for information processing. He was so successful that in 1896 he was able to found the World Tabulating Corporation; by 1924, after several mergers and acquisitions, it became known as IBM.

By then railroads and insurance companies had taken to using the cards and the machines that ran them for their record keeping; by the 1940s, government offices and libraries were commonly employing them too; and when computers became popular for business use in the 1950s, punch cards became ubiquitous, arriving in the mail with almost every bill. A political science professor at Berkeley named Joseph Harris had the idea of adapting them for voting.

He was inspired by IBM’s introduction of a device called the Port-o-Punch, a penlike tool for poking out the holes in a card, and his goal was not improved accuracy in vote counting but speed and economy. He reasoned that punch-card ballots would require relatively little investment in machinery yet could be almost instantly tallied. To develop the technology, he turned to a Berkeley engineering professor named William Rouverol.

The assemblage Rouverol devised has not changed, and it is used not only in Florida but in 37 percent of all counties in the country, more than any other technology for voting. (Myers-type machines and newer optical-scan and computer technologies both cover about 20 percent of voters.) The voter receives a punch card and places it in a stand together with a booklet that indicates which holes represent which candidate; he or she uses the Port-o-Punch to poke out the appropriate holes and then drops the card into a bin.

The concept provided obvious benefits. When introduced, it cost about $800 per voting station and weighed about 20 pounds, versus $5,000 and nearly half a ton for a traditional voting machine. Localities that still used paper ballots could suddenly afford machines. The cards provided a clear and simple paper trail. The readers that came with the machines could count votes in minutes, whereas paper ballots would have taken hours or days. Furthermore, since election officials could afford to buy many of the machines, lines at the polls got shorter.