“all Safe, Gentlemen, All Safe!”


Despite Elisha Otis’ invention, elevator accidents were distressingly frequent until well into the present century. One reason was that the safety devices used by Otis’ competitors were not all as foolproof as his. Moreover, Otis’ wagonspring safety brake had a serious limitation. It was fine for stopping an elevator that traveled at a dignified pace. But an elevator that was already descending at a speed of several hundred feet a minute when its supporting cable gave way could not be brought to an abrupt halt without injuring its occupants. In 1878 Elisha Otis’ son Charles invented a safety brake, activated by a speed governor of the flying-ball type commonly used on steam engines, that would bring a runaway car to a gradual stop. Prom then on, most elevators were fitted out with this or similar controls—none of which, however, were quite as certain in their operation as the elegantly simple device displayed at the Crystal Palace.


Some elevators were equipped with air cushions. That is, the elevator was fitted snugly to its shaft so that, if other safety devices should fail, and the elevator should fall, it would act as a huge ram, or piston, compressing the air beneath it so as to form an elastic buffer. The idea was sound, but when it was tried out at the Parker House in Boston, in 1879, the experimenters made a serious error. They neglected to install vents in the lower part of the shaft through which some of the compressed air could escape. When the rope was cut, and the test car dropped, the air pressure quickly built up to a point where it blew out the shaftway doors. With the air cushion thus ruptured, the car plunged to the bottom of the shaft, injuring all eight persons aboard. Another test was made at the Chicago Exposition of 1880 with a carload of passengers who had not, one assumes, heard about the Parker House fiasco. This time all went well. “The car fell 109 feet,” Harper’s reported. “The passengers walked out smiling, and the crowd cheered with wild enthusiasm.”

Safety brakes and air cushions notwithstanding, the New York Tribune , in 1912, cited published data showing that 2,671 persons had been reported injured or killed in elevator accidents in the United States in the years from 1909 through 1911. The paper suggested that the true total was probably much greater. It was popularly assumed that the higher an elevator rose, the more dangerous the ride. Thus, even though there was little basis for this notion, when Frank W. Woolworth, the five-and-ten-cent-store king, undertook to put up the tallest office building in the world—on completion, in 1913, it soared fifty-eight stories and 780 feet above City Hall Park in lower Manhattan—his publicity agents bore down hard on the assertion that its elevators would have every safety device known to elevator science (see “The World’s Tallest Building” by Spencer Klaw, A MERICAN H ERITAGE , February, 1977). When the day came to try them out, no human being rode the test car as its temporary supporting rope was cut and it hissed down the shaft. The sole occupant was a tumbler full of water, and so gentle was the car’s landing—or so the Woolworth publicity men announced—that not a drop was spilled.

With the completion of the Woolworth Building the heroic age of the elevator came to an end. To be sure, a number of striking improvements still lay ahead. In 1915 Otis engineers invented an automatic leveling device that made it unnecessary for elevator operators to go through a series of jerky, last-minute landing maneuvers. Nine years later Otis scored again, introducing electrical controls that made it possible to bring a high-speed elevator to a smooth stop at its destination simply by pushing a button at the start of the trip. This allowed elevators to be operated at speeds so great that an operator forced to rely on old-fashioned manual controls would be able to hit the floor he was aiming for only by good luck. In 1950 this process of automation was carried further when Otis put into service in Dallas the first of the nowfamiliar, high-speed, push-button elevators that require no operator at all. But the novelty of riding in an automated elevator quickly wears off. Moreover, an elevator ride no longer offers even the thrill of danger, one insurance company having calculated that it is five times as safe these days to take an elevator as it is to walk up or down a flight of stairs.

Such excitement as has been generated recently by elevators has been architectural rather than technological. Some hotels now have glass-enclosed observation elevators that glide up and down the walls of huge inner courtyards, or atriums, around which the hotel’s guest rooms are ranged. Sometimes people ride these elevators purely for the sake of riding, not just to get to their rooms. The writer Roger Angell has described a party in the lobby of one hotel equipped wih such elevators, the thirty-story Hyatt Regency in Houston, on the night before the 1974 Super Bowl Game. “Late that night, early that morning, the scary, silent elevators continued to rise and fall, bearing solitary drunks and clinging, wordless couples,” he wrote in The New Yorker . “Some of them rode up and down again and again, holding on to the railing with both hands and watching the crowded, clustered party recede and advance below them, as if seen through some fantastic zoom lens.”