Inventing A Modern Navy

PrintPrintEmailEmail

And in the end the ship was no better than he thought it would be. The machinery placed so far aft was necessarily in so small a space that oilers, firemen, and engineers had a hard time getting in to tend it. The propeller—conceived in an effort to get around patents that covered the design of lightweight screws—became a monumental wheel that weighed seven tons. Finally, to avoid that hole in the sternpost, this huge propeller not only was set twenty inches to one side of the rudder but also was projected two feet behind it, thus becoming what Bennett termed “manifestly a menace to the safety of the ship.”

Word of these things began to make its way around even while the ship was building, and the opinion grew that Haswell had made a “fearful botch of his designs,” and finally he was relieved of his duties as chief engineer of the San Jacinto .

What followed has no real place in the present discussion; its meaning, as F. Scott Fitzgerald said about something else, was only personal. But it does not seem fair to Charles Haswell or consistent with the laws of proper narration to leave him in the limbo of waiting orders. So it may be said that when the ship was ready for her maiden voyage, he was ordered back to her as chief engineer.

The hit-or-miss method of research was inefficient, but it was probably the best way to proceed.

But Haswell did not want this new duty, and he was in no condition to assume it. A medical survey had found him to be suffering from “torpid liver and chronic dyspepsia,” and the attending physicians by a vote of two to one had pronounced him “unfit for sea service.” The medical report was sent to the secretary of the Navy, who, being out of town, had left the secretary of war to act for him. By some singular mischance, the dissenting and not the majority opinion about Haswell’s fitness for sea duty was signed.

Haswell wrote to the senior Navy commissioner to say that he now would have to resign from the service for reasons of health. The commissioner dissuaded his old friend from this action by asking him to return to the San Jacinto for her maiden voyage to the Mediterranean on the condition that if, on reaching Gibraltar, Haswell still was in failing health, he would, on the promise of the secretary of the Navy, be invalided home. Haswell agreed, but only three days out on the voyage he had to be put on the sick list by the ship’s doctor and relieved of all duties. When the San Jacinto arrived in Gibraltar, Haswell asked the commanding officer of the station to detach him from his ship and send him home, in accordance with his agreement with officials in Washington. When the commanding officer replied that he had no authority to do this, Haswell left the San Jacinto without orders and returned to the United States.

For taking matters into his own hands in this way, Haswell was removed from the naval service in May of 1852. Seven years later the President asked the Senate to confirm the reappointment of the man who over the course of sixteen years in the Navy had designed, built, and operated much of the machinery for its early steamships, who had been the moving spirit behind the creation of the Navy’s corps of engineers, who had drawn up the general order that defined the responsibilities of engineers (which remained a Navy manual for the next fifty years), and who had written the “Engineers’ Bible,” which stayed in print for seventy years. But the Congress adjourned before taking action on the President’s request. It is pleasing to report, however, that Haswell set himself up as a consulting engineer in New York City, where he remained for the next fifty-five years, serving a distinguished body of clients, public and private. He died, still working, ten days short of ninety-eight years of age.

Much of Haswell’s experience can be taken as confirmation of the fact that life from time to time does indeed imitate H.M.S. Pinafore . Yet beneath all those comic turns in Haswell’s career lay the hard truth that in those days it was very difficult to build a steam warship. First, those engaged did not know enough about the new engines and materials they were working with, and second, they had no reliable method for learning more. This ignorance is not to be taken as just another example of the deficiencies of the military mind. The problems were an accurate reflection of what used to be called the “state of the art” before Madison Avenue got hold of the phrase. Wherever men were trying to put together new engines and materials, they were caught up in the same problems.

The endeavors of the inventor Charles Goodyear are an exaggerated but suggestive example. Goodyear had a “firm belief in the future of rubber,” and for years he sought ways to turn raw rubber into a stable commodity. He coated it, treated it, mixed it, and kneaded into it anything that came to hand. Then one day, in the heat of an argument with friends, he happened to drop a globule of the current mixture he was holding in his hand onto the top of a hot stove—and found that he had discovered “vulcanization.”