Inventing A Modern Navy


The other significant figure in this period of engineering progress, Benjamin Isherwood, was a man Ericsson didn’t like very much—indeed, at all—but he did a great deal to substantiate the validity of Ericsson’s method. Two decades Ericsson’s junior, Isherwood was a member of the first class of the Navy’s corps of engineers and became a chief engineer while still in his mid-twenties, in 1848. One of the problems he worked on was how much steam was required in a cylinder to obtain maximum efficiency. Dickerson—the man who spent so much of the Navy’s money in his belief that steam expanded the same way gases do—had turned his attention to the same problem and concluded a small amount of steam would serve: put in a little, and its power to expand would do the work. He was a “short cutoff man.” But then there were others, “long cutoff men,” who had found in practice that steam was not like a gas; you needed more of it in the cylinder to do the required work. But no one knew quite how much.

Starting at the other end of things from Dickerson, Isherwood began with actual operations of engines in ships at sea, tracking the distribution of steam throughout the whole propulsive system and carefully measuring gains and losses of energy in the various parts of the system. In the course of a decade he built up a comprehensive record of all his observations. Then he turned the warship Michigan into a laboratory to study the behavior of steam in a series of controlled and changing conditions. From these prolonged exercises he acquired the evidence he needed to establish the optimal length of the cutoff—the proper amount of steam needed to obtain maximum efficiencies.

This evidence also gave him the information he needed to modify the hypotheses having to do with the expansion of gases, in effect creating a new theoretical scheme for the design of steam power plants, lsher wood published the fruits of his labor in Experimental Researches in Steam Engineering in the early 1860s. The two volumes were translated into six foreign languages and became for several generations a model for further researches.

Both Ericsson and Isherwood left behind monuments to their ways of going at things. Ericsson, as all the world knows, made the Monitor , which changed forever the character of naval warfare. Isherwood, in the Civil War, built six hundred steam plants, unsurpassed in the efficiency and reliability of their performance, for the ships of the United States Navy. And toward the end of the war, he built the Wampanoag , a ship called at the time “faultless in her model and, as a steamship—the fastest in the world” and regarded by the great marine engineer George Melville fifty years later as a “magnificent SUCCESS in every way—really in many ways the greatest success as a steam war vessel that the world has ever known.”


Ericsson and Isherwood were among the founding fathers of a process now called research and development. R&D combines a sophisticated sense of experiment with a subtle understanding of how to apply a growing body of theory to practice. This process is the primal energy in technological advance. It has demonstrated its capacity to push its way through the boundaries of current usage, standard operating procedures, the outlying unknown, blind prejudice, cultural sanction, reasonable proportion, and common sense—all to the end of the making of new things.

But for a long time the Navy did not benefit from the process that its engineers had played such a part in developing. Between 1865 and 1881 nothing moved. After the Great Rebellion the country was sick of war. It was a period of financial panic and hard times. In spite of the presumed lessons of the recent hostilities, there was a great deal of confusion about what a navy was supposed to do—protect harbors, destroy other nations’ commerce, guard its own merchantmen, simply show the flag. And whatever a navy did, it ought, in the judgment of a large number of naval officers, to do it with sailing vessels. These officers were hoping, as other people do, to retain an understandable order in the screwed-up scheme of things. Their feelings were bulwarked by the influence of those who were looking for the cheapest possible way to maintain the integrity of the Shield of the Republic.

The new Navy built faster, more powerful ships—but no one really knew how they should be used.

Given all this it was natural that, for all her “magnificent success,” the Wampanoag , like the Demologos before her, should be turned into a receiving ship (before she was sold out of the service), because no one knew what to do with her in time of peace. Her passing was a striking demonstration that no one at the time was quite clear about what to do with any of the ships on the Navy list. Many of them were therefore left to a gradual deterioration at their moorings. By 1880, as the House Naval Affairs Committee discovered in that year, most of the warships in the fleet were no longer “capable of firing a gun.”