Inventing A Modern Navy

PrintPrintEmailEmail

From all this wearing confusion the Navy was at long last rescued by a kind of miracle. One year after the authorization of the White Squadron that had started the train of disorganizing events, an extraordinary man, Adm. Stephen B. Luce, had somehow persuaded the service to establish a war college. He believed that, in such a place, “by reasoning from the facts of naval history to general principles,” it would be possible to raise “naval warfare from the empirical stage to the dignity of a science.”

The Navy was rescued from its confusion by a kind of miracle.

For a period of years the institution thus conceived was greeted with utter indifference by most and with measured contempt by the rest. It seemed to have no probable future. The opinion of the service is well expressed by a conversation that took place in 1892. Two officers bumped into a friend on the steps of a Washington club. The friend, also an officer, was on the staff of the War College. Was there to be a session this year? they asked him. There was, he replied. “Well,” he was asked, “are you going to do anything practical?”

“What do you mean by practical?” he wanted to know.

“Well, torpedo boats, launches, and that sort of thing.”

Two years earlier that staff officer, working at the War College, reasoning from the facts of naval history to some general principles, had finished a book called The Influence of Sea Power upon History . It had been a tremendous success, including among its readers such distinguished names as Kaiser Wilhelm II and Theodore Roosevelt. But it seems probable that none of those officers on the steps in Washington yet realized that in its pages would be found in time the blueprint for the first practical organization not only for torpedo boats and launches but for all the other naval ships at sea.

What Alfred Thayer Mahan said, reduced to its ultimate simplicity, was this: The great end of naval warfare is the command of the sea, and the means to that end are fleet engagements on ocean waters. If this is established, all the subsidiary concerns—our harbor protection, coastline defense, blockade, and commerce destruction—are made irrelevant.

Thirty years earlier Benjamin Isherwood, brooding upon the potential of his Wampanoag , had thought of all this and had put it more succinctly than had Mahan. Isherwood had argued for the building of a fleet of seagoing “iron steam ships —clad with invulnerable armor plates, furnished with maximum steam power.” With these, he had claimed, we could “preserve our coasts from the presence of an enemy’s naval force by keeping command of the open sea” and coincidentally make life miserable for the enemy’s own shores and commerce. Beyond that, such a fleet would eliminate the need for a system of harbor defense designed to protect the coast at every point. And finally it would make it possible for us to choose our own time and place for fighting. Nobody listened; at the time neither the national interest nor the state of the technology made it possible for people to have such thoughts.

Thirty years later, when Mahan put forward the well-argued case in support of a similar idea, he found a more receptive audience. His thesis—so carefully developed from historical facts—that the lifeblood of a nation was commerce and that the security of that commerce depended on warships acting together as a fleet—fighting not on a nation’s “hearthstone” but “beyond the threshold”—had an immediate appeal. It took some time to make its way, but it slowly got through. And as this concept of ends and means took hold, it brought order to the technology.

When it became clear, for instance, that a battleship was more than a floating battery of ambiguous purpose, that it was, in fact, an integral, maneuvering part of an organized line of battle, the backbone of the fleet, it became possible by defining its function to determine the characteristics required to fulfill that function—to determine, in other words, its appropriate form. Thus the interfering fire of mixed batteries designed primarily to increase the weight of metal gave way in 1906 to the single-caliber all-big-gun ship that could deliver far more destructive energy far more accurately.

By the same token it then became possible to figure out the other functions to be performed when lines of battle meet in hostile engagement—the scouting and screening activities that contribute to the whole endeavor—and from there to establish the hierarchy of types —cruisers and destroyers—that made up the fleet. After years of confusion things fell into place.

As the technology moved toward a more settled structure, other less tangible matters began also to fall into place. As the importance of machinery increased, the position and influence of engineers became more clearly defined and accepted. With the progress of ballistics the place of the gunnery officers in the hierarchy of all line officers became almost, if not quite, as significant as that of a good ship handler. And the ascent in that hierarchy led through defined stages of command from destroyers through cruisers to battleship divisions and, if you were lucky, to flag rank. During these years the Navy recovered its earlier dignity as a service sure of its intentions and at home with itself.